Bio-Methane Potential (BMP) of Cassava Pulp Waste and Effect of Alkaline Pre-Treatment
Main Article Content
Abstract
Cassava starch processing industry produces cassava pulp as a by-product or waste. In the well-known Duong Lieu village, this waste is released in surrounding environment without treatment causing serious environmental problems. The study aimed to (1) determine the Biomethane Potential (BMP) of the waste and to (2) find out if alkaline pre-treatment would improve it. Different cassava pulp samples were going through BMP test: untreated sample; pre-treated samples at different NaOH doses of 2, 6, 8 wt.% (dry weight-based) and pre-treated samples at different NaHCO₃ doses of 2, 4, 6, 8 wt.% (dry weight based). BMP assays were conducted in 590 mL bottles at 37 °C for 40 days. As the result, BMP of the untreated waste was 281 NmL CH₄/g VS and alkaline pretreatment increased BMP of the waste up to 479 mL CH₄/g VS by treatment with NaOH 6 wt.% and 450 mL CH₄/g VS by treatment with NaHCO₃ 6 wt.%. In addition, there was a significant reduction of lignin content of the substrate after alkaline pre-treatment. The results show that cassava pulp waste has moderate potential for biogas recovery. In addition, alkaline pre-treatment by either NaOH or NaHCO₃ would significantly improve its BMP, possibly thanks to the reduction of lignin content.
Keywords
Biomethane potential (BMP), cassava pulp waste, alkaline pre-treatment
Article Details
References
[1]. Dang Kim Chi, Viet Nam Villages and the Environment, Science and Technology Publising House, 2005
[2]. Tanapiwat A., Murata Y., Kosugi A., Yamada R., Kondo A., Arai T., Rugthaworn P., Mori Y, Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase, Appl Microbiol Biotechnol. Apr 90(1) 377-84, 2011 Feb 16. https://doi.org/10.1007/s00253-011-3115-8
[3]. Daiana G., Martinez, Armin Feiden, Reinaldo Barticcatti, Katya Regina de Freitas Zara, Ethanol production from waste of cassava processing, Applied Science. 8 (2018) 2158 https://doi.org/10.3390/app8112158
[4]. Martin Ca., Wei M., Xiong S., Jönsson Leif J, Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment, Industrial Crops and Products, Vol. 97, March (2017) 21-31 https://doi.org/10.1016/j.indcrop.2016.11.067
[5]. Nga N. T. H., Huong N. L., Hiep T. K., Tam N. K. B., Thành L.H., Study on production of probiotics to treat cassava-starch processing’s solid waste into bioorganic fertilizer, VNU Journal of Science: Earth and Environmental Sciences, 32, 1S (2016) 282-288 (in Vietnamese)
[6]. Paepatung N., Nopharatana A. and Songkasiri W., Biomethane potential of biological solid materials and agricultural wastes, Asian Journal on Energy and Environment, 10(01), (2009) 19-27
[7]. Hendriks A. T. W. M. and Zeeman G., Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresource Technology, Vol. 100(1) (2008) 10-8 https://doi.org/10.1016/j.biortech.2008.05.027
[8]. Kim J. S., Lee Y. Y., Kim T. H., A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass, Bioresource Technology 199 (2016) 42-48 https://doi.org/10.1016/j.biortech.2015.08.085
[9]. Angelidaki.I., Alves M., Bolzonella D., Borzacconi L., Campos J.L., Guwy A.J., Kalyuzhnyi S., Jenicek P. and Van L. J. B, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science & Technology 59(5) (2004) 927-934 https://doi.org/10.2166/wst.2009.040
[10]. Sudha A., Sivakumar V., Sangeetha V. and Priyenka Devi K.S., Physicochemical treatment for improving bioconversion of cassava industrial residues, Environment Progress & Sustainable Energy, Vol.37, no.1, pp. 577-583 https://doi.org/10.1002/ep.12702
[11]. Cu T. T. T., Nguyen T. X., Triolo J. M., Pedersen L., Le V. D., Le P. D. and Sommer S. G., Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield. Asian Australasian Journal of Animal Sciences, Vol. 28, no. 2, February (2015) 280-289 https://doi.org/10.5713/ajas.14.0312
[12]. He Y., Pang Y., Li X., Liu Y., Li R., Zheng M., Investigation on the changes of main compositions and extractives of rice straw pretreated with NaOH for biogas production, Energy and Fuels, 23, 4, 2220-2224 (2009) https://doi.org/10.1021/ef8007486
[13]. Song Z., Yang G., Liu X., Yan Z., Yuan Y., and Liao Y., Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion, PLOS ONE, 9(6) (2014). https://doi.org/10.1371/journal.pone.0093801
[14]. Sambusiti, Monlau C., Ficara F., Carrère E. and Malpei H. F., A comparison of different pretreatments to increase methane production from two agricultural substrates, Applied Energy, 104 (2013) 62-70 https://doi.org/10.1016/j.apenergy.2012.10.060
[15]. Song Z., Yang G., Liu, Yan Z., Yuan Y., Liao Y. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion, PLOS ONE, (2014) 9 https://doi.org/10.1371/journal.pone.0093801
[16]. Owens J. M. and Chynoweth D. P., Biochemical methane potential of municipal solid waste (MSW) components, Water Science & Technology, Vol. 27(2) (1993) 1-14 https://doi.org/10.2166/wst.1993.0065
[17]. Nguyen P. H. L., Tran M. H., and Nguyen T. T., Determination of biochemical methane potential (BMP) of municipal organic solid waste in Hanoi, Thermal Energy Review, 96 (2010) 22-24 (in Vietnamese)
[18]. Contreras L. M., Schelle H., Sebrango C. R. and Pereda I., Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process, Water Science & Technology, 65(6) (2012) 1142-9 https://doi.org/10.2166/wst.2012.951
[19]. Chen Y., Cheng J. J., and Creamer K. S., Inhibition of anaerobic digestion process: a review, Bioresource Technology, 99, pp. 4044-64, Jul 10, 2008 https://doi.org/10.1016/j.biortech.2007.01.057
[2]. Tanapiwat A., Murata Y., Kosugi A., Yamada R., Kondo A., Arai T., Rugthaworn P., Mori Y, Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase, Appl Microbiol Biotechnol. Apr 90(1) 377-84, 2011 Feb 16. https://doi.org/10.1007/s00253-011-3115-8
[3]. Daiana G., Martinez, Armin Feiden, Reinaldo Barticcatti, Katya Regina de Freitas Zara, Ethanol production from waste of cassava processing, Applied Science. 8 (2018) 2158 https://doi.org/10.3390/app8112158
[4]. Martin Ca., Wei M., Xiong S., Jönsson Leif J, Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment, Industrial Crops and Products, Vol. 97, March (2017) 21-31 https://doi.org/10.1016/j.indcrop.2016.11.067
[5]. Nga N. T. H., Huong N. L., Hiep T. K., Tam N. K. B., Thành L.H., Study on production of probiotics to treat cassava-starch processing’s solid waste into bioorganic fertilizer, VNU Journal of Science: Earth and Environmental Sciences, 32, 1S (2016) 282-288 (in Vietnamese)
[6]. Paepatung N., Nopharatana A. and Songkasiri W., Biomethane potential of biological solid materials and agricultural wastes, Asian Journal on Energy and Environment, 10(01), (2009) 19-27
[7]. Hendriks A. T. W. M. and Zeeman G., Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresource Technology, Vol. 100(1) (2008) 10-8 https://doi.org/10.1016/j.biortech.2008.05.027
[8]. Kim J. S., Lee Y. Y., Kim T. H., A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass, Bioresource Technology 199 (2016) 42-48 https://doi.org/10.1016/j.biortech.2015.08.085
[9]. Angelidaki.I., Alves M., Bolzonella D., Borzacconi L., Campos J.L., Guwy A.J., Kalyuzhnyi S., Jenicek P. and Van L. J. B, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science & Technology 59(5) (2004) 927-934 https://doi.org/10.2166/wst.2009.040
[10]. Sudha A., Sivakumar V., Sangeetha V. and Priyenka Devi K.S., Physicochemical treatment for improving bioconversion of cassava industrial residues, Environment Progress & Sustainable Energy, Vol.37, no.1, pp. 577-583 https://doi.org/10.1002/ep.12702
[11]. Cu T. T. T., Nguyen T. X., Triolo J. M., Pedersen L., Le V. D., Le P. D. and Sommer S. G., Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield. Asian Australasian Journal of Animal Sciences, Vol. 28, no. 2, February (2015) 280-289 https://doi.org/10.5713/ajas.14.0312
[12]. He Y., Pang Y., Li X., Liu Y., Li R., Zheng M., Investigation on the changes of main compositions and extractives of rice straw pretreated with NaOH for biogas production, Energy and Fuels, 23, 4, 2220-2224 (2009) https://doi.org/10.1021/ef8007486
[13]. Song Z., Yang G., Liu X., Yan Z., Yuan Y., and Liao Y., Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion, PLOS ONE, 9(6) (2014). https://doi.org/10.1371/journal.pone.0093801
[14]. Sambusiti, Monlau C., Ficara F., Carrère E. and Malpei H. F., A comparison of different pretreatments to increase methane production from two agricultural substrates, Applied Energy, 104 (2013) 62-70 https://doi.org/10.1016/j.apenergy.2012.10.060
[15]. Song Z., Yang G., Liu, Yan Z., Yuan Y., Liao Y. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion, PLOS ONE, (2014) 9 https://doi.org/10.1371/journal.pone.0093801
[16]. Owens J. M. and Chynoweth D. P., Biochemical methane potential of municipal solid waste (MSW) components, Water Science & Technology, Vol. 27(2) (1993) 1-14 https://doi.org/10.2166/wst.1993.0065
[17]. Nguyen P. H. L., Tran M. H., and Nguyen T. T., Determination of biochemical methane potential (BMP) of municipal organic solid waste in Hanoi, Thermal Energy Review, 96 (2010) 22-24 (in Vietnamese)
[18]. Contreras L. M., Schelle H., Sebrango C. R. and Pereda I., Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process, Water Science & Technology, 65(6) (2012) 1142-9 https://doi.org/10.2166/wst.2012.951
[19]. Chen Y., Cheng J. J., and Creamer K. S., Inhibition of anaerobic digestion process: a review, Bioresource Technology, 99, pp. 4044-64, Jul 10, 2008 https://doi.org/10.1016/j.biortech.2007.01.057