Effects of Fe dopants on structural, optical and electrical properties of NiTiO3 materials
Main Article Content
Abstract
In this study, the effects of Fe dopant on the structural, optical and electrical properties of NiTiO3 materials prepared by sol-gel method were investigated. The prepared powders were investigated through X-ray diffraction, Raman scattering, scanning electron microscope, UV-visible absorption, vibrating sample magnetometer, electrical measurement to explore the structural, ferromagnetic, and electrical properties. The single phase Ni1-xFexTiO3 (x = 0, 0.05 and 0.10) materials were obtained. Doping of Fe into NiTiO3 lead to the decreasing of lattice parameter and increased the particle size compared to the undoped sample. Ferroelectric and ferromagnetic properties of all Fe-doped NiTiO3 ceramics have been investigated at room temperature. The ferromagnetic hysteresis loop of the Fe-doped NiTiO3 sample at room temperature is due to the formation of oxygen vacancies and their associated exchange interaction. Ferroelectric properties of Fe doped samples were decreased with the increase of Fe concentration. This can be due to the Fe dopant into NiTiO3 material. The Fe dopant caused to increase the conductivity of NiTiO3 sample which resulted in a decrease in ferroelectric parameters.
Keywords
NiTiO3, ferroelectric properties, conductivity, dopant, ilmenite
Article Details
References
[1] Lihong Yang, Hongmei Qiu, Liqing Pan, Zhengang Guo, Mei Xu, Jinhu Yin, Xuedan Zhao, Magnetic properties of BaTiO3 and BaTi1−xMxO3 (M=Co, Fe) nanocrystals by hydrothermal method, J. Magn. Magn. Mater. 350 (2014) 1–5. https://doi.org/10.1016/j.jmmm.2013.09.036
[2] B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du, Z.G. Liu, Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3, Phys. Rev. B. 79 (2009) 134109. https://doi.org/10.1103/PhysRevB.79.134109
[3] A. Karaphun, S. Hunpratub, E. Swatsitang, Effect of annealing on magnetic properties of Fe-doped SrTiO3 nanopowders prepared by hydrothermal method, Microelectron. Eng. 126 (2014) 42–48. https://doi.org/10.1016/j.mee.2014.05.001
[4] Y. Lin, Y., Chang, Y., Chen, G., Chang, Y., and Chang, Y. Lin, Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation, J. Alloy. Compd. J. 479 (2009) 785–790. https://doi.org/10.1016/j.jallcom.2009.01.061
[5] S. Yuvaraj, V.D. Nithya, K.S. Fathima, C. Sanjeeviraja, G.K. Selvan, S. Arumugam, R.K. Selvan, Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis, Mater. Res. Bull. 48 (2013) 1110–1116. https://doi.org/10.1016/j.materresbull.2012.12.001
[6] Y. Fujioka, J. Frantti, A. Puretzky, G. King, Raman Study of the structural distortion in the Ni1– xCox TiO3 solid solution, Inorg. Chem. 55 (2016) 9436–9444. https://doi.org/10.1021/acs.inorgchem.6b01693
[7] N. Lenin, A. Karthik, M. Sridharpanday, M. Selvam, S.R. Srither, S. Arunmetha, P. Paramasivam, V. Rajendran, et al Lenin, N., Karthik, A., Sridharpanday, M., Selvam, M., Srither, S. R., Arunmetha, S., Electrical and magnetic behavior of iron doped nickel titanate (Fe3+/NiTiO3) magnetic nanoparticles, J. Magn. Magn. Mater. 397 (2016) 281–286. https://doi.org/10.1016/j.jmmm.2015.08.115
[8] M.I. Baraton, G. Busca, M.C. Prieto, G. Ricchiardi, V.S. Escribano, On the Vibrational Spectra and Structure of FeCrO3 and of the Ilmenite-Type Compounds CoTiO3 and NiTiO3, J. Solid State Chem. 112 (1994) 9–14. https://doi.org/10.1006/jssc.1994.1256
[9] M.A. Ruiz Preciado, A. Kassiba, A. Morales-Acevedo, M. Makowska-Janusik, Vibrational and electronic peculiarities of NiTiO3 nanostructures inferred from first principle calculations, RSC Adv. 5 (2015) 17396–17404. https://doi.org/10.1039/C4RA16400H
[10] R. Vijayalakshmi, V. Rajendran, Effect of reaction temperature on size and optical properties of NiTiO3 nanoparticles, E-Journal Chem. 9 (2012) 282–288. https://doi.org/10.1155/2012/607289
[11] K.P. Lopes, L.S. Cavalcante, A.Z. Sim, J.A. Varela, E. Longo, E.R. Leite, NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization, J. Alloys Compd. 468 (2009) 327–332. https://doi.org/10.1016/j.jallcom.2007.12.085
[12] P.H.M. de Korte, G. Blasse, Water photoelectrolysis using nickel titanate and niobate as photoanodes, J. Solid State Chem. 44 (1982) 150–155. https://doi.org/10.1016/0022-4596(82)90359-0
[2] B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du, Z.G. Liu, Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3, Phys. Rev. B. 79 (2009) 134109. https://doi.org/10.1103/PhysRevB.79.134109
[3] A. Karaphun, S. Hunpratub, E. Swatsitang, Effect of annealing on magnetic properties of Fe-doped SrTiO3 nanopowders prepared by hydrothermal method, Microelectron. Eng. 126 (2014) 42–48. https://doi.org/10.1016/j.mee.2014.05.001
[4] Y. Lin, Y., Chang, Y., Chen, G., Chang, Y., and Chang, Y. Lin, Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation, J. Alloy. Compd. J. 479 (2009) 785–790. https://doi.org/10.1016/j.jallcom.2009.01.061
[5] S. Yuvaraj, V.D. Nithya, K.S. Fathima, C. Sanjeeviraja, G.K. Selvan, S. Arumugam, R.K. Selvan, Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis, Mater. Res. Bull. 48 (2013) 1110–1116. https://doi.org/10.1016/j.materresbull.2012.12.001
[6] Y. Fujioka, J. Frantti, A. Puretzky, G. King, Raman Study of the structural distortion in the Ni1– xCox TiO3 solid solution, Inorg. Chem. 55 (2016) 9436–9444. https://doi.org/10.1021/acs.inorgchem.6b01693
[7] N. Lenin, A. Karthik, M. Sridharpanday, M. Selvam, S.R. Srither, S. Arunmetha, P. Paramasivam, V. Rajendran, et al Lenin, N., Karthik, A., Sridharpanday, M., Selvam, M., Srither, S. R., Arunmetha, S., Electrical and magnetic behavior of iron doped nickel titanate (Fe3+/NiTiO3) magnetic nanoparticles, J. Magn. Magn. Mater. 397 (2016) 281–286. https://doi.org/10.1016/j.jmmm.2015.08.115
[8] M.I. Baraton, G. Busca, M.C. Prieto, G. Ricchiardi, V.S. Escribano, On the Vibrational Spectra and Structure of FeCrO3 and of the Ilmenite-Type Compounds CoTiO3 and NiTiO3, J. Solid State Chem. 112 (1994) 9–14. https://doi.org/10.1006/jssc.1994.1256
[9] M.A. Ruiz Preciado, A. Kassiba, A. Morales-Acevedo, M. Makowska-Janusik, Vibrational and electronic peculiarities of NiTiO3 nanostructures inferred from first principle calculations, RSC Adv. 5 (2015) 17396–17404. https://doi.org/10.1039/C4RA16400H
[10] R. Vijayalakshmi, V. Rajendran, Effect of reaction temperature on size and optical properties of NiTiO3 nanoparticles, E-Journal Chem. 9 (2012) 282–288. https://doi.org/10.1155/2012/607289
[11] K.P. Lopes, L.S. Cavalcante, A.Z. Sim, J.A. Varela, E. Longo, E.R. Leite, NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization, J. Alloys Compd. 468 (2009) 327–332. https://doi.org/10.1016/j.jallcom.2007.12.085
[12] P.H.M. de Korte, G. Blasse, Water photoelectrolysis using nickel titanate and niobate as photoanodes, J. Solid State Chem. 44 (1982) 150–155. https://doi.org/10.1016/0022-4596(82)90359-0