Cloning and Expression of a Recombinant NS1 Antigen from a Dengue 3 Serotype Viral Isolate in Escherichia coli
Main Article Content
Abstract
Dengue is dangerous infectious disease affecting on the more than half of the global population lives in areas risk of dengue. This disease is caused by infection with dengue virus (DENV) through the bite of infected female mosquitos. Detection of the dengue virus infection could be performed by virus isolation, molecular biology methods or by immunology methods. Non-structural protein 1 (NS1) has been considered as diagnostic marker for detection of dengue virus infection. In this study, the full length NS1 region from DENV serotype 3 was cloned in vectors to generate the recombinant constructs of pCR::DENV-3 ns1 and pET::DENV-3 ns1. rNS1 protein was successfully expression in E. coli BL21(DE3) and confirmed by Western blot. Optimal conditions for expression of rNS1 was established. The highest level of protein expression was achieved at induction conditions of 0.05 mM IPTG inducer, 2% ethanol, 37 oC for 4 hours. rNS1 protein was successfully purified by immobilized metal affinity chromatography. Obtained pure rNS1 could be used for further studies in the development of vaccine and diagnostic tools.
Keywords
Dengue virus, Escherichia coli, expression, NS1, recombinant
Article Details
References
[1] A. Murugesan and M. Manoharan, Dengue Virus in
Emerging and Reemerging Viral Pathogens, vol. 1,
Fundamental and Basic Virology Aspects of Human,
Animal and Plant Pathogens; Amsterdam, The
Netherlands: Elsevier, 2020, pp. 281-359.
https://doi.org/10.1016/B978-0-12-819400-3.00016-8
[2] T. Nguyen-Tien, et al., Risk factors of dengue fever in
an urban area in Vietnam: a case-control study, BMC
Public Health, 21(1) (2021) 1-13.
https://doi.org/10.1186/s12889-021-10687-y
[3] M. C. Castro, M. E. Wilson, and D. E. Bloom, Disease
and economic burdens of dengue, Lancet Infect. Dis.
17(3) (2017), e70-e78.
https://doi.org/10.1016/S1473-3099(16)30545-X
[4] X. Lu, H. Bambrick, P. Pongsumpun, P. W.
Dhewantara, D. T.T. Toan, and W. Hu, Dengue
outbreaks in the COVID-19 era: Alarm raised for Asia,
PLoS Negl. Trop. Dis. 15(10) (2021) e0009778.
https://doi.org/10.1371/journal.pntd.0009778
[5] M. G. Guzman et al., Dengue: a continuing global
threat, Nat. Rev. Microbiol. 8(12) (2010), S7-S16.
https://doi.org/10.1038/nrmicro2460
[6] V. Waman, M. Kale, U. Kulkarni-Kale, Genetic
diversity and evolution of dengue virus serotype 3: A
comparative genomics study, Infect. Genet. Evol. 49
(2017), 234-240.
https://doi.org/10.1016/j.meegid.2017.01.022
[7] M. A. Aguilar-Luis, H. Carrillo-Ng, S. Kym et al.,
Detection of Dengue virus serotype 3 in Cajamarca,
Peru: molecular diagnosis and clinical characteristics,
Int. J. Infect. Dis. 116 (2022), s119-120.
https://doi.org/10.1016/j.ijid.2021.12.282
[8] M. A. Kabir, H. Zilouchian, M. A. Younas, and W.
Asghar, Dengue detection: advances in diagnostic
tools from conventional technology to point of care,
Biosensors 11(7) (2021) 206.
https://doi.org/10.3390/bios11070206
[9] S. A. Paranavitane et al., Dengue NS1 antigen as a
marker of severe clinical disease, BMC Infect. Dis.
14(1) (2014) 570.
https://doi.org/10.1186/s12879-014-0570-8
[10] M. Kikuti et al., Accuracy of the SD BIOLINE Dengue
Duo for rapid point-of-care diagnosis of dengue, PLoS
One 14(3) (2019) e0213301.
https://doi.org/10.1371/journal.pone.0213301
[11] S. D. Lytton et al., Predominant secondary dengue
infection among Vietnamese adults mostly without
warning signs and severe disease, Int. J. Infect. Dis.
100 (2020) 316-323, 2020.
https://doi.org/10.1016/j.ijid.2020.08.082
[12] U. K. Laemmli, Cleavage of structural proteins during
the assembly of the head of bacteriophage T4, Nat.
227(5259) (1970) 680-685.
https://doi.org/10.1038/227680a0
[13] G. Lemos, I. Guillén, J. R. Fernández, T. Díaz, and A.
B. Colarte, Expression and purification of a full-length
recombinant NS1 protein from a dengue 2 serotype
viral isolate, Biotecnol. Apl. 30 (2013) 187-193.
[14] T. J. Choi and T. T. Geletu, High level expression and
purification of recombinant flounder growth hormone
in E. coli, J. Genet. Eng. Biotechnol. 16(2) (2018) 347.
https://doi.org/10.1016/j.jgeb.2018.03.006
[15] F. Du et al., Regulating the T7 RNA polymerase
expression in E. coli BL21 (DE3) to provide more host
options for recombinant protein production, Microb.
Cell Fact. 20(1) (2021) 1-10.
https://doi.org/10.1186/s12934-021-01680-6
[16] H. P. Sørensen and K. K. Mortensen, Soluble
expression of recombinant proteins in the cytoplasm of
Escherichia coli, Microb. Cell Fact. 4(1) (2005) 1-8.
[17] G. Chhetri, P. Kalita, and T. Tripathi, An efficient
protocol to enhance recombinant protein expression
using ethanol in Escherichia coli, MethodsX 2 (2015)
385-391.
https://doi.org/10.1016/j.mex.2015.09.005
Emerging and Reemerging Viral Pathogens, vol. 1,
Fundamental and Basic Virology Aspects of Human,
Animal and Plant Pathogens; Amsterdam, The
Netherlands: Elsevier, 2020, pp. 281-359.
https://doi.org/10.1016/B978-0-12-819400-3.00016-8
[2] T. Nguyen-Tien, et al., Risk factors of dengue fever in
an urban area in Vietnam: a case-control study, BMC
Public Health, 21(1) (2021) 1-13.
https://doi.org/10.1186/s12889-021-10687-y
[3] M. C. Castro, M. E. Wilson, and D. E. Bloom, Disease
and economic burdens of dengue, Lancet Infect. Dis.
17(3) (2017), e70-e78.
https://doi.org/10.1016/S1473-3099(16)30545-X
[4] X. Lu, H. Bambrick, P. Pongsumpun, P. W.
Dhewantara, D. T.T. Toan, and W. Hu, Dengue
outbreaks in the COVID-19 era: Alarm raised for Asia,
PLoS Negl. Trop. Dis. 15(10) (2021) e0009778.
https://doi.org/10.1371/journal.pntd.0009778
[5] M. G. Guzman et al., Dengue: a continuing global
threat, Nat. Rev. Microbiol. 8(12) (2010), S7-S16.
https://doi.org/10.1038/nrmicro2460
[6] V. Waman, M. Kale, U. Kulkarni-Kale, Genetic
diversity and evolution of dengue virus serotype 3: A
comparative genomics study, Infect. Genet. Evol. 49
(2017), 234-240.
https://doi.org/10.1016/j.meegid.2017.01.022
[7] M. A. Aguilar-Luis, H. Carrillo-Ng, S. Kym et al.,
Detection of Dengue virus serotype 3 in Cajamarca,
Peru: molecular diagnosis and clinical characteristics,
Int. J. Infect. Dis. 116 (2022), s119-120.
https://doi.org/10.1016/j.ijid.2021.12.282
[8] M. A. Kabir, H. Zilouchian, M. A. Younas, and W.
Asghar, Dengue detection: advances in diagnostic
tools from conventional technology to point of care,
Biosensors 11(7) (2021) 206.
https://doi.org/10.3390/bios11070206
[9] S. A. Paranavitane et al., Dengue NS1 antigen as a
marker of severe clinical disease, BMC Infect. Dis.
14(1) (2014) 570.
https://doi.org/10.1186/s12879-014-0570-8
[10] M. Kikuti et al., Accuracy of the SD BIOLINE Dengue
Duo for rapid point-of-care diagnosis of dengue, PLoS
One 14(3) (2019) e0213301.
https://doi.org/10.1371/journal.pone.0213301
[11] S. D. Lytton et al., Predominant secondary dengue
infection among Vietnamese adults mostly without
warning signs and severe disease, Int. J. Infect. Dis.
100 (2020) 316-323, 2020.
https://doi.org/10.1016/j.ijid.2020.08.082
[12] U. K. Laemmli, Cleavage of structural proteins during
the assembly of the head of bacteriophage T4, Nat.
227(5259) (1970) 680-685.
https://doi.org/10.1038/227680a0
[13] G. Lemos, I. Guillén, J. R. Fernández, T. Díaz, and A.
B. Colarte, Expression and purification of a full-length
recombinant NS1 protein from a dengue 2 serotype
viral isolate, Biotecnol. Apl. 30 (2013) 187-193.
[14] T. J. Choi and T. T. Geletu, High level expression and
purification of recombinant flounder growth hormone
in E. coli, J. Genet. Eng. Biotechnol. 16(2) (2018) 347.
https://doi.org/10.1016/j.jgeb.2018.03.006
[15] F. Du et al., Regulating the T7 RNA polymerase
expression in E. coli BL21 (DE3) to provide more host
options for recombinant protein production, Microb.
Cell Fact. 20(1) (2021) 1-10.
https://doi.org/10.1186/s12934-021-01680-6
[16] H. P. Sørensen and K. K. Mortensen, Soluble
expression of recombinant proteins in the cytoplasm of
Escherichia coli, Microb. Cell Fact. 4(1) (2005) 1-8.
[17] G. Chhetri, P. Kalita, and T. Tripathi, An efficient
protocol to enhance recombinant protein expression
using ethanol in Escherichia coli, MethodsX 2 (2015)
385-391.
https://doi.org/10.1016/j.mex.2015.09.005