Effect of Copper on the Grain Size and Tensile Strength of Ultra-low Carbon Steel
Main Article Content
Abstract
This paper presents a study on the grain size and tensile strength of annealed ultra-low carbon (ULC) steel containing 0.008 wt.% carbon (C) and various contents of copper (Cu). The annealing temperature was predetermined at 700, 800, and 900 C with the same holding time of 15 minutes and a slow cooling rate. The microstructural result showed that the ferritic grain size of the steel increased with the annealing temperature, e.g. increased to 60 and 65 µm when the temperature raised to 900 C for the 0.112 and 0.285 wt.% Cu steel, respectively. This phenomenon was attributed to the recrystallization of the steel during the annealing process. The coarser grains resulted in a decrease in the tensile strength of the steel despite that the tensile strength of the steel was found to improve with the increased Cu content. The low tensile strengths and good elongation remained in the ULC steel, for instance, the ultimate tensile strength stayed in the range of 234-350 MPa and the elongation remained in the range of 22-35 % dependent on the annealed temperature, and the Cu content. The results show that the content of Cu less than 0.3 wt.% did not have a negative effect on the tensile strength of the studied steel, but caused a deteriorated elongation of the steels annealed at 900 C.
Keywords
ULC steel, copper in steel, grain size, recrystallization, tensile strength
Article Details
References
[1] H. S. Jin, B. Mishra, Minimization of copper contamination in steel scrap. In Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. The Minerals, Metals & Materials Series. Springer, pp. 357-364. https://doi.org/10.1007/978-3-030-36830-2_34.
[2] O. I. Sekunowo, S. I. Durowaye, O. P. Gbenebor, Effect of copper on microstructure and mechanical properties of construction steel, Int. J. Chem. Nucl. Metall. Mater. Eng., vol. 8, no. 8, 2014, pp. 785-789.
[3] S. K. De, S. Srikanth, A. K. Bhakat, A. Saxena, B. K. Jha, Copper bearing steels from SAIL and its application, Int. J. Metall. Eng., vol. 5, no. 1, 1-8, 2016. https://doi.org/10.5923/j.ijmee.20160501.01
[4] P. Sellamuthu, P. Hodgson, N. Stanford, Effect of copper on microstructure, recrystallization and precipitation kinetics in strip cast low carbon steel, Mater. Res. Express, vol 6, no 12, ID article 1265j5, 2020. https://doi.org/10.1088/2053-1591/ab7310
[5] J. Syarif, K. Nakashima, T. Tsuchiyama and S. Takaki, Effect of solute copper on yield strength in dislocation-strengthen steels, ISIJ Int., vol. 47, no. 2, pp. 340-345, 2007. https://doi.org/10.2355/isijinternational.47.340
[6] P. K. Ray, R. Ganguly, A. Panda, Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables, Mater. Sci. Eng. A, vol. 346, no. 1-2, pp. 122-131, 2003. https://doi.org/10.1016/S0921-5093(02)00526-9
[7] S. S. G. Banadkouki, D. P. Dune, Formation of ferritic products during continuous cooling of Cu-bearing HSLA steel, ISIJ Int., vol. 46, no. 5, pp. 759-768, 2006. https://doi.org/10.2355/isijinternational.46.759
[8] S. Meiler, F. Hoffmann, H. Schwich, R. Kawalla, W. Bleck, U. Prahl, Copper-alloyed precipitation-hardenable-ferritic-pearlitic steel for energy-efficient and distortion-reduced production of cold-formed, high-strength structural components, Steel Res. Int., vol. 90, no. 6, Article ID 1800432, 2019. https://doi.org/10.1002/srin.201800432.
[9] A. H. Bui, H. Le, Strength and microstructure of cold-rolled IF steel, Acta Metall. Slovaca, vol. 22, no. 1, pp. 35-43, 2016. https://doi.org/10.12776/ams.v22i1.690
[10] A. S. Ghorabaei, M. Nili-Ahmadabadi, Effect of prior austenite grain size and phase transformation temperature on bainitic ferrite formation in multi-constituent microstructures of a strong ultra-low-carbon steel, Mater. Sci. Eng. A, vol. 815, Article ID 141300, 2021. https://doi.org/j.msea.2021.141300
[11] P. D. Hodgson, R. K. Gibbs, A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ Int., vol. 32, no. 12, pp. 1329-1338, 1992. https://doi.org/10.2355/isijinternational.32.1329
[12] P. Salvetr, A. Gokhman, Z. Novy, P. Motycka, J. Kotous, Effect of 1.5 wt% copper addition and various contents of silicon on mechanical properties of 1.7102 medium carbon steel, Materials (Basel), vol. 14, no. 18, 2021, ID article 5244. https://doi.org/10.3390/ma14185244
[2] O. I. Sekunowo, S. I. Durowaye, O. P. Gbenebor, Effect of copper on microstructure and mechanical properties of construction steel, Int. J. Chem. Nucl. Metall. Mater. Eng., vol. 8, no. 8, 2014, pp. 785-789.
[3] S. K. De, S. Srikanth, A. K. Bhakat, A. Saxena, B. K. Jha, Copper bearing steels from SAIL and its application, Int. J. Metall. Eng., vol. 5, no. 1, 1-8, 2016. https://doi.org/10.5923/j.ijmee.20160501.01
[4] P. Sellamuthu, P. Hodgson, N. Stanford, Effect of copper on microstructure, recrystallization and precipitation kinetics in strip cast low carbon steel, Mater. Res. Express, vol 6, no 12, ID article 1265j5, 2020. https://doi.org/10.1088/2053-1591/ab7310
[5] J. Syarif, K. Nakashima, T. Tsuchiyama and S. Takaki, Effect of solute copper on yield strength in dislocation-strengthen steels, ISIJ Int., vol. 47, no. 2, pp. 340-345, 2007. https://doi.org/10.2355/isijinternational.47.340
[6] P. K. Ray, R. Ganguly, A. Panda, Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables, Mater. Sci. Eng. A, vol. 346, no. 1-2, pp. 122-131, 2003. https://doi.org/10.1016/S0921-5093(02)00526-9
[7] S. S. G. Banadkouki, D. P. Dune, Formation of ferritic products during continuous cooling of Cu-bearing HSLA steel, ISIJ Int., vol. 46, no. 5, pp. 759-768, 2006. https://doi.org/10.2355/isijinternational.46.759
[8] S. Meiler, F. Hoffmann, H. Schwich, R. Kawalla, W. Bleck, U. Prahl, Copper-alloyed precipitation-hardenable-ferritic-pearlitic steel for energy-efficient and distortion-reduced production of cold-formed, high-strength structural components, Steel Res. Int., vol. 90, no. 6, Article ID 1800432, 2019. https://doi.org/10.1002/srin.201800432.
[9] A. H. Bui, H. Le, Strength and microstructure of cold-rolled IF steel, Acta Metall. Slovaca, vol. 22, no. 1, pp. 35-43, 2016. https://doi.org/10.12776/ams.v22i1.690
[10] A. S. Ghorabaei, M. Nili-Ahmadabadi, Effect of prior austenite grain size and phase transformation temperature on bainitic ferrite formation in multi-constituent microstructures of a strong ultra-low-carbon steel, Mater. Sci. Eng. A, vol. 815, Article ID 141300, 2021. https://doi.org/j.msea.2021.141300
[11] P. D. Hodgson, R. K. Gibbs, A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ Int., vol. 32, no. 12, pp. 1329-1338, 1992. https://doi.org/10.2355/isijinternational.32.1329
[12] P. Salvetr, A. Gokhman, Z. Novy, P. Motycka, J. Kotous, Effect of 1.5 wt% copper addition and various contents of silicon on mechanical properties of 1.7102 medium carbon steel, Materials (Basel), vol. 14, no. 18, 2021, ID article 5244. https://doi.org/10.3390/ma14185244