Application of Vietnamese nano graphene as SBR rubber reinforcement for abrasion resistance conveyors
Main Article Content
Abstract
Graphene has been extensively considered an ideal additive to improve the mechanical properties of many composite materials, including rubbers, because of its novel strength, high surface area, and remarkable thermal and electron conductivity. Styrene Butadiene Rubber (SBR) is considered as good material for abrasion resistance conveyors in industries. However, the mechanical properties of SBR still need to be improved. This study shows the enhancement of Vietnamese nano graphene (GNPs) on mechanical properties of SBR rubber such as tensile strength, tear strength, abrasion resistance, and adhesion strength. The distribution of the DOP-modified GNPs in the SBR matrix was investigated using scanning electron spectroscopy. Results show a significantly increasing in SBR/GNPs nanocomposite properties mechanical properties with the presence of GNPs ( tensile strength, and tear strength increased by 29.67% and 31.89% respectively in comparison with SBR rubber without GNPs, and abrasion weight loss decreased by 30.84% in comparison with SBR and adhesion strength with polyester was 3 times higher than that of SBR). The evaluation of GNPs content in SBR/GNPs nanocomposite material was carried out. Results show that 0.5 phr of GNPs content in SBR/GNPs nanocomposite material was the optimal GNPs content with good mechanical properties, high abrasion resistance and good adhesion with polyester fabric.
Keywords
Vietnamese nano graphene, SBR, abrasion resistance conveyors
Article Details
References
[1] Ismail H, Shaari S, Othman N., The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidized natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds, Polym Test 2011, 30(7), 784-90. https://doi.org/10.1016/j.polymertesting.2011.07.003
[2] Nair PP, George K, Jayakrishnan N., Studies on mechanical behavior high impact polystyrene/vinyl clay nanocomposites: Comparison between in situ polymerization and melt mixing, Polym Compos 2017, 38(1), 68-76. https://doi.org/10.1002/pc.23561
[3] Xue Y, Shen M, Lu F, Han Y, Zeng S, Chen S, et al. Effects of heterionic montmorillonites on flame resistances of polystyrene nanocomposites and the flame retardant mechanism, J Compos Mater 2018, 52(10), 1295-303. https://doi.org/10.1177/0021998317724861
[4] Xia B, Wan X-j, Li C-t, Dong Z-s., Review on solution SBR development
[5] Scheirs J., Priddy D. Modern styrenic polymers: polystyrenes and styrenic copolymers. John Wiley & Sons, 2003. https://doi.org/10.1002/0470867213
[6] Fan Y., Fowler G. D., Zhao M., The past, present and future of carbon black as a rubber reinforcing filler-A review, J Clean Prod 2020, 247, 119115. https://doi.org/10.1016/j.jclepro.2019.119115
[7] Abdul Salim Z. A. S., Hassan A., Ismail H., A review on hybrid fillers in rubber composites, Polym Plastics Technol Eng 2018, 57(6), 523-39. https://doi.org/10.1080/03602559.2017.1329432
[8] George G., Sisupal S. B., Tomy T., Pottammal B. A., Kumaran A., Suvekbala V., et al., Thermally conductive thin films derived from defect free graphene-natural rubber latex nanocomposite: Preparation and properties, Carbon 2017, 119, 527-34. https://doi.org/10.1016/j.carbon.2017.04.068
[9] Kang H., Tang Y., Yao L., Yang F., Fang Q., Hui D., Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing, Compos Part B Eng 2017, 112, 1-7. https://doi.org/10.1016/j.compositesb.2016.12.035
[10] Wang Z., Liu J., Wu S., Wang W., Zhang L., Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers, Phys Chem Chem Phys 2010, 12(12), 3014-30. https://doi.org/10.1039/b919789c
[11] La D. D., Nguyen T. A., Quoc V. D., Nguyen T. T., Nguyen D. A., Pham Duy L. N., et al., A new approach of fabricating graphene nanoplates@ natural rubber latex composite and its characteristics and mechanical properties. Journal of Carbon Research 2018, 4(3), 50. https://doi.org/10.3390/c4030050
[12] Novoselov K. S., Geim A. K., Morozov S., Jiang D., Zhang Y., Dubonos Sa, et al., Electric field effect in atomically thin carbon films, Science 2004, 306 (5696), 666-9. https://doi.org/10.1126/science.1102896
[13] Bunch J. S., Van Der Zande A. M., Verbridge S. S., Frank I. W., Tanenbaum D. M., Parpia J. M., et al., Electromechanical resonators from graphene sheets, Science 2007, 315(5811), 490-3. https://doi.org/10.1126/science.1136836
[14] Katsnelson M. I., Graphene: carbon in two dimensions. Materials Today 2007, 10(1), 20-7. https://doi.org/10.1016/S1369-7021(06)71788-6
[15] Kopelevich Y., Esquinazi P., Graphene physics in graphite. Advanced Materials 2007, 19(24), 4559-63. https://doi.org/10.1002/adma.200702051
[2] Nair PP, George K, Jayakrishnan N., Studies on mechanical behavior high impact polystyrene/vinyl clay nanocomposites: Comparison between in situ polymerization and melt mixing, Polym Compos 2017, 38(1), 68-76. https://doi.org/10.1002/pc.23561
[3] Xue Y, Shen M, Lu F, Han Y, Zeng S, Chen S, et al. Effects of heterionic montmorillonites on flame resistances of polystyrene nanocomposites and the flame retardant mechanism, J Compos Mater 2018, 52(10), 1295-303. https://doi.org/10.1177/0021998317724861
[4] Xia B, Wan X-j, Li C-t, Dong Z-s., Review on solution SBR development
[5] Scheirs J., Priddy D. Modern styrenic polymers: polystyrenes and styrenic copolymers. John Wiley & Sons, 2003. https://doi.org/10.1002/0470867213
[6] Fan Y., Fowler G. D., Zhao M., The past, present and future of carbon black as a rubber reinforcing filler-A review, J Clean Prod 2020, 247, 119115. https://doi.org/10.1016/j.jclepro.2019.119115
[7] Abdul Salim Z. A. S., Hassan A., Ismail H., A review on hybrid fillers in rubber composites, Polym Plastics Technol Eng 2018, 57(6), 523-39. https://doi.org/10.1080/03602559.2017.1329432
[8] George G., Sisupal S. B., Tomy T., Pottammal B. A., Kumaran A., Suvekbala V., et al., Thermally conductive thin films derived from defect free graphene-natural rubber latex nanocomposite: Preparation and properties, Carbon 2017, 119, 527-34. https://doi.org/10.1016/j.carbon.2017.04.068
[9] Kang H., Tang Y., Yao L., Yang F., Fang Q., Hui D., Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing, Compos Part B Eng 2017, 112, 1-7. https://doi.org/10.1016/j.compositesb.2016.12.035
[10] Wang Z., Liu J., Wu S., Wang W., Zhang L., Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers, Phys Chem Chem Phys 2010, 12(12), 3014-30. https://doi.org/10.1039/b919789c
[11] La D. D., Nguyen T. A., Quoc V. D., Nguyen T. T., Nguyen D. A., Pham Duy L. N., et al., A new approach of fabricating graphene nanoplates@ natural rubber latex composite and its characteristics and mechanical properties. Journal of Carbon Research 2018, 4(3), 50. https://doi.org/10.3390/c4030050
[12] Novoselov K. S., Geim A. K., Morozov S., Jiang D., Zhang Y., Dubonos Sa, et al., Electric field effect in atomically thin carbon films, Science 2004, 306 (5696), 666-9. https://doi.org/10.1126/science.1102896
[13] Bunch J. S., Van Der Zande A. M., Verbridge S. S., Frank I. W., Tanenbaum D. M., Parpia J. M., et al., Electromechanical resonators from graphene sheets, Science 2007, 315(5811), 490-3. https://doi.org/10.1126/science.1136836
[14] Katsnelson M. I., Graphene: carbon in two dimensions. Materials Today 2007, 10(1), 20-7. https://doi.org/10.1016/S1369-7021(06)71788-6
[15] Kopelevich Y., Esquinazi P., Graphene physics in graphite. Advanced Materials 2007, 19(24), 4559-63. https://doi.org/10.1002/adma.200702051