Nitrogen Removal by Sulfur-Based Carriers: Effect of Physical Properties of Carriers on Autotrophic Denitrification
Main Article Content
Abstract
Sulfur-based autotrophic denitrification is an effective treatment technique to remove nitrogen in water and wastewater, in which sulfur compounds act as an electron-donors for the conversion of nitrate to nitrogen gas by autotrophic microorganisms. The main advantage of this process is no external organic carbon source compared with the conventional heterotrophic denitrification process, which resulted in reducing the cost of treatment and the poisoning effect of some organic carbon compounds. In this study, two sulfur-based carriers (C1 and C2) which have different mass ratios with the same core components as elemental sulfur and calcium carbonate but varying adhesive volumes were prepared to evaluate the sulfur-driven denitrification performance. The results show that the nitrate removal rates of C1 and C2 were 0.34 ± 0.04 and 0.32 ± 0.02 kg NO3--N/m3/d, respectively. Beside that, the sulfate concentration generated by autotrophic denitrification were quite high at 273.5 ± 27.8 and 251.3 ± 17.0 mg SO42-/L, respectively.
Keywords
Sulfur-based carrier, autotrophic denitrification, pore size, Thiobacillus, Sulfurimonas
Article Details
References
[1]. Liu H., Jiang W., Wan D., Qu J., Study of a combined
heterotrophic and sulfur autotrophic denitrification
technology for removal of nitrate in water. Journal of
Hazardous Materials, 2009. 169: p. 23-28.
https://doi.org/10.1016/j.jhazmat.2009.03.053
[2]. Liu C., Li W., Li X., Zhao D., Ma B., Wang Y., Liu F.,
Lee D.J., Nitrite accumulation in continuous-flow
partial autotrophic denitrification reactor using sulfide
as electron donor. Bioresource Technology, 2017. 243:
p. 1237-1240.
https://doi.org/10.1016/j.biortech.2017.07.030
[3]. Di Capua F., Papirio S., Lens P.N.L., Esposito G.,
Chemolithotrophic denitrification in biofilm reactors:
a review. Chemical Engineering Journal, 2015. 280: p.
643-657.
https://doi.org/10.1016/j.cej.2015.05.131
[4]. Kostrytsia A., Papirio S., Frunzo L., Mattei M. R.,
Porca E., Collins G., Lens P. N. L., Esposito G.,
Elemental sulfur-based autotrophic denitrification and
denitritation: microbially catalyzed sulfur hydrolysis
and nitrogen conversions. Journal Environmental
Management, 2018. 211: p. 313- 322.
https://doi.org/10.1016/j.jenvman.2018.01.064
[5]. Sahinkaya E., Dursun N., Use of elemental sulfur and
thiosulfate as electron sources for water denitrification.
Bioprocess and Biosystems Engineering, 2015. 38: p.
531-541.
https://doi.org/10.1007/s00449-014-1293-3
[6]. Vo T. K. Q., Kang S., An S., Kim H. S., Exploring
critical factors influencing on autotrophic
denitrification by elemental sulfur-based carriers in
upflow packed-bed bioreactors. Journal of Water
Process Engineering, 2021. 40: p. 101866.
https://doi.org/10.1016/j.jwpe.2020.101866
[7]. Kang S., Vo T. K. Q., An S., Kim H. S., Investigating
the effects of physical properties of sulphur-based
carriers on autotrophic denitrification. Environmental
Technology, 2021. p. 1-10.
https://doi.org/10.1080/09593330.2021.1964610
[8]. Di Capua F., Ahoranta S. H., Papirio S., Lens P. N. L.,
Esposito G., Impacts of sulfur source and temperature
on sulfur-driven denitrification by pure and mixed
cultures of Thiobacillus. Process Biochemistry, 2016.
51: p. 1576-1584.
https://doi.org/10.1016/j.procbio.2016.06.010
[9]. Yang Y., Gerrity S., Collins G., Chen T., Li R., Xie S.,
Enrichment and characterization of autotrophic
Thiobacillus denitrifiers from anaerobic sludge for
nitrate removal. Process Biochemistry, 2018. 68: p.
165-170.
https://doi.org/10.1016/j.procbio.2018.02.017
[10]. APHA, AWWA, WEF - Standard Methods for the
Examination of Water and Wastewater. 21st edition,
Washington DC., USA, 2005. p.1070-1072.
[11]. Woo Y. C., Lee J. J., Jeong A., Song J., Choi Y., Kim
H.S., Removal of nitrogen by a sulfur-based carrier
with powdered activated carbon (PAC) for
denitrification in membrane bioreactor (MBR).
Journal of Water Process Engineering, 2020. 34: p.
101149.
https://doi.org/10.1016/j.jwpe.2020.101149
[12]. Sahinkaya E., Kilic A., Duygulu B., Pilot and full scale
applications of sulfur-based autotrophic denitrification
process for nitrate removal from activated sludge
process effluent. Water Research, 2014. 60: p. 210-
217.
https://doi.org/10.1016/j.watres.2014.04.052
[13]. Zhou W., Sun Y., Wu B., Zhang Y., Huang M.,
Miyanaga T., Zhang Z., Autotrophic denitrification for
nitrate and nitrite removal using sulfur-limestone.
Journal of Environmental Science, 2011. 23: p. 1761-
1769.
https://doi.org/10.1016/S1001-0742(10)60635-3
[14]. Nisola, M. G., Redillas, C. F. R. M., Cho, E., Han, M.,
Yoo, N., Chung, W. J., 2011. Comparison of reactive
porous media for sulfur-oxidizing denitrification of
high nitrate strength wastewater. Biochem. Eng. J. 58-
59: 79- 86
https://doi.org/10.1016/j.bej.2011.08.016
heterotrophic and sulfur autotrophic denitrification
technology for removal of nitrate in water. Journal of
Hazardous Materials, 2009. 169: p. 23-28.
https://doi.org/10.1016/j.jhazmat.2009.03.053
[2]. Liu C., Li W., Li X., Zhao D., Ma B., Wang Y., Liu F.,
Lee D.J., Nitrite accumulation in continuous-flow
partial autotrophic denitrification reactor using sulfide
as electron donor. Bioresource Technology, 2017. 243:
p. 1237-1240.
https://doi.org/10.1016/j.biortech.2017.07.030
[3]. Di Capua F., Papirio S., Lens P.N.L., Esposito G.,
Chemolithotrophic denitrification in biofilm reactors:
a review. Chemical Engineering Journal, 2015. 280: p.
643-657.
https://doi.org/10.1016/j.cej.2015.05.131
[4]. Kostrytsia A., Papirio S., Frunzo L., Mattei M. R.,
Porca E., Collins G., Lens P. N. L., Esposito G.,
Elemental sulfur-based autotrophic denitrification and
denitritation: microbially catalyzed sulfur hydrolysis
and nitrogen conversions. Journal Environmental
Management, 2018. 211: p. 313- 322.
https://doi.org/10.1016/j.jenvman.2018.01.064
[5]. Sahinkaya E., Dursun N., Use of elemental sulfur and
thiosulfate as electron sources for water denitrification.
Bioprocess and Biosystems Engineering, 2015. 38: p.
531-541.
https://doi.org/10.1007/s00449-014-1293-3
[6]. Vo T. K. Q., Kang S., An S., Kim H. S., Exploring
critical factors influencing on autotrophic
denitrification by elemental sulfur-based carriers in
upflow packed-bed bioreactors. Journal of Water
Process Engineering, 2021. 40: p. 101866.
https://doi.org/10.1016/j.jwpe.2020.101866
[7]. Kang S., Vo T. K. Q., An S., Kim H. S., Investigating
the effects of physical properties of sulphur-based
carriers on autotrophic denitrification. Environmental
Technology, 2021. p. 1-10.
https://doi.org/10.1080/09593330.2021.1964610
[8]. Di Capua F., Ahoranta S. H., Papirio S., Lens P. N. L.,
Esposito G., Impacts of sulfur source and temperature
on sulfur-driven denitrification by pure and mixed
cultures of Thiobacillus. Process Biochemistry, 2016.
51: p. 1576-1584.
https://doi.org/10.1016/j.procbio.2016.06.010
[9]. Yang Y., Gerrity S., Collins G., Chen T., Li R., Xie S.,
Enrichment and characterization of autotrophic
Thiobacillus denitrifiers from anaerobic sludge for
nitrate removal. Process Biochemistry, 2018. 68: p.
165-170.
https://doi.org/10.1016/j.procbio.2018.02.017
[10]. APHA, AWWA, WEF - Standard Methods for the
Examination of Water and Wastewater. 21st edition,
Washington DC., USA, 2005. p.1070-1072.
[11]. Woo Y. C., Lee J. J., Jeong A., Song J., Choi Y., Kim
H.S., Removal of nitrogen by a sulfur-based carrier
with powdered activated carbon (PAC) for
denitrification in membrane bioreactor (MBR).
Journal of Water Process Engineering, 2020. 34: p.
101149.
https://doi.org/10.1016/j.jwpe.2020.101149
[12]. Sahinkaya E., Kilic A., Duygulu B., Pilot and full scale
applications of sulfur-based autotrophic denitrification
process for nitrate removal from activated sludge
process effluent. Water Research, 2014. 60: p. 210-
217.
https://doi.org/10.1016/j.watres.2014.04.052
[13]. Zhou W., Sun Y., Wu B., Zhang Y., Huang M.,
Miyanaga T., Zhang Z., Autotrophic denitrification for
nitrate and nitrite removal using sulfur-limestone.
Journal of Environmental Science, 2011. 23: p. 1761-
1769.
https://doi.org/10.1016/S1001-0742(10)60635-3
[14]. Nisola, M. G., Redillas, C. F. R. M., Cho, E., Han, M.,
Yoo, N., Chung, W. J., 2011. Comparison of reactive
porous media for sulfur-oxidizing denitrification of
high nitrate strength wastewater. Biochem. Eng. J. 58-
59: 79- 86
https://doi.org/10.1016/j.bej.2011.08.016