Research For the Production of Environmentally Friendly Material from Industrial Waste Stone Powder by Geopolymer Technology
Main Article Content
Abstract
Geopolymer technology was applied for environment friendly material fabrication with 20 – 23 wt% waste stone powder from artificial stone production process and 0.5 wt% of Na2SiO3 liquid glass (39 wt%). The material met the technical requirements according to TCVN 6477:2016 standard for unburnt material. The time of co-hydrolysis reaction help to create the Si-O-Si interspersed with bonds was not affected by the curing process of PCB40 with the presence of liquid glass (Na2SiO3.nH2O). We are creating a geopolymer network and helping the material reduce brittleness and increase ductility and compressive strength of conventional cement. The peak region at 959 cm-1 of FT-IR analysis and the surface structure morphology of SEM images showed that the Si-O-Al/Si-O-Si bond was formed by the reaction of Na2SiO3 with cement. The surface of the geopolymer material is denser and more tightly bound than the sample without Na2SiO3. The manufacture of unburnt materials from waste stone powder from the artificial stone production process by TCVN 6477:2016 can open a new treatment direction for this type of waste, reducing the harmful effects of landfill on the environment.
Keywords
geopolymer, sodium silicate, unburnt materials, waste stone powder
Article Details
References
[1] J. Davidovits, Geopolymer Chemistry and Applications. 5-th edition, Institut Géopolymère, Saint-Quentin, France, 2020.
[2] W. W. A. Zailani, A. Bouaissi, M. M. Al Bakri Abdullah, R. Abd Razak, S. Yoriya, M. A. A. Mohd Salleh, M. A. Z. Mohd Remy Rozainy, H. Fansuri, Bonding strength characteristics of FA-based geopolymer paste as a repair material when applied on opc substrate, Appl. Sci. 10, 1-14, 2020, https://doi.org/10.3390/app10093321
[3] S. A. P. Rosyidi, S. Rahmad, N. I. M. Yusoff, A. H. Shahrir, A. N. H. Ibrahim, N. F. N. Ismail, K. H. Badri, Investigation of the chemical, strength, adhesion and morphological properties of fly ash based geopolymer-modified bitumen, Constr. Build. Mater. 255, 119364, 2020. https://doi.org/10.1016/j.conbuildmat.2020.119364
[4] M. Xia, B. Nematollahi, J. Sanjayan, Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications, Autom. Constr. 101, 179-189, 2019. https://doi.org/10.1016/j.autcon.2019.01.013
[5] P. Nuaklong, V. Sata, P. Chindaprasirt, Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens, Constr. Build. Mater. 161, 365-373, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.152
[6] K. Lu, B. Wang, Z. Han, R. Ji, Experimental study of magnesium ammonium phosphate cements modified by fly ash and metakaolin, J. Build. Eng. 51, 2022, https://doi.org/10.1016/j.jobe.2022.104137
[7] E. Molaei Raisi, J. Vaseghi Amiri, M.R. Davoodi, Mechanical performance of self-compacting concrete incorporating rice husk ash, Constr. Build. Mater. 177, 148-157, 2018, https://doi.org/10.1016/j.jclepro.2019.119797.
[8] N. Q. Phu, N. T. Le, Study on using sea sand, combining fly ash and granulated blast furnace slag to manufacture the polymer concrete applications for irrigation works, Journal of Construction Sience and Technology 3th, 2021.
[9] E. Arioz, O. Arioz, O. M. Kockar, Geopolymer Synthesis with Low Sodium Hydroxide Concentration, Iran. J. Sci. Technol. - Trans. Civ. Eng. 44, 525-533, 2020, https://doi.org/10.1007/s40996-019-00336-1.
[10] C. A. Rees, J. L. Provis, G. C. Lukey, J. S. J. Van Deventer, In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation, Langmiur, 23, 9076-9082, 2007, https://doi.org/10.1021/la701185g.
[11] Z. Wang, Y. Sun, S. Zhang, Y. Wang, Effect of sodium silicate on Portland cement/calcium aluminate cement/gypsum rich-water system: Strength and microstructure, RSC Adv. 9, 9993-10003, 2019, https://doi.org/10.1039/c8ra09901d.
[12] I. Hager, Colour Change in Heated Concrete, Fire Technol. 50, 945-958, 2014. https://doi.org/10.1007/s10694-012-0320-7.
[2] W. W. A. Zailani, A. Bouaissi, M. M. Al Bakri Abdullah, R. Abd Razak, S. Yoriya, M. A. A. Mohd Salleh, M. A. Z. Mohd Remy Rozainy, H. Fansuri, Bonding strength characteristics of FA-based geopolymer paste as a repair material when applied on opc substrate, Appl. Sci. 10, 1-14, 2020, https://doi.org/10.3390/app10093321
[3] S. A. P. Rosyidi, S. Rahmad, N. I. M. Yusoff, A. H. Shahrir, A. N. H. Ibrahim, N. F. N. Ismail, K. H. Badri, Investigation of the chemical, strength, adhesion and morphological properties of fly ash based geopolymer-modified bitumen, Constr. Build. Mater. 255, 119364, 2020. https://doi.org/10.1016/j.conbuildmat.2020.119364
[4] M. Xia, B. Nematollahi, J. Sanjayan, Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications, Autom. Constr. 101, 179-189, 2019. https://doi.org/10.1016/j.autcon.2019.01.013
[5] P. Nuaklong, V. Sata, P. Chindaprasirt, Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens, Constr. Build. Mater. 161, 365-373, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.152
[6] K. Lu, B. Wang, Z. Han, R. Ji, Experimental study of magnesium ammonium phosphate cements modified by fly ash and metakaolin, J. Build. Eng. 51, 2022, https://doi.org/10.1016/j.jobe.2022.104137
[7] E. Molaei Raisi, J. Vaseghi Amiri, M.R. Davoodi, Mechanical performance of self-compacting concrete incorporating rice husk ash, Constr. Build. Mater. 177, 148-157, 2018, https://doi.org/10.1016/j.jclepro.2019.119797.
[8] N. Q. Phu, N. T. Le, Study on using sea sand, combining fly ash and granulated blast furnace slag to manufacture the polymer concrete applications for irrigation works, Journal of Construction Sience and Technology 3th, 2021.
[9] E. Arioz, O. Arioz, O. M. Kockar, Geopolymer Synthesis with Low Sodium Hydroxide Concentration, Iran. J. Sci. Technol. - Trans. Civ. Eng. 44, 525-533, 2020, https://doi.org/10.1007/s40996-019-00336-1.
[10] C. A. Rees, J. L. Provis, G. C. Lukey, J. S. J. Van Deventer, In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation, Langmiur, 23, 9076-9082, 2007, https://doi.org/10.1021/la701185g.
[11] Z. Wang, Y. Sun, S. Zhang, Y. Wang, Effect of sodium silicate on Portland cement/calcium aluminate cement/gypsum rich-water system: Strength and microstructure, RSC Adv. 9, 9993-10003, 2019, https://doi.org/10.1039/c8ra09901d.
[12] I. Hager, Colour Change in Heated Concrete, Fire Technol. 50, 945-958, 2014. https://doi.org/10.1007/s10694-012-0320-7.