Optimal Extraction and Spray-Drying Anthocyanin from Perilla Frutescens
Main Article Content
Abstract
Perilla frutescens has been commonly used as a food ingredient and in folk medicine. Anthocyanins, with many biological activities, have potential applications in food and pharmaceuticals. This study aimed to determine the optimal conditions for anthocyanin extraction with solvents before investigating the effects of spray drying conditions to obtain anthocyanin powder. The result shows that 72% ethanol at 63 ℃ in 90 min resulted in the optimal anthocyanin content of 3.373 mg/g DM. The suitable conditions for spray-drying to obtain anthocyanin powder were at 160°C with an input flow rate of 7 mL/min and a carrier agent concentration of 25%. A scanning electron microscope (SEM), X-ray radiation (XRD), and Fourier-transform infrared spectroscopy (FT-IR) confirmed effective microencapsulation, providing a basis for further research and applications of anthocyanin powder from this material.
Keywords
Anthocyanin, Perilla frutescens, solvent, spray-drying
Article Details
References
[1] H. M. Ahmed, Ethnomedicinal, Phytochemical and
pharmacological investigations of perilla frutescens
(L.) britt, Molecules, vol. 24, no. 1, Dec. 2018.
https://doi.org/10.3390/molecules24010102
[2] G. K. Oguis, E. K. Gilding, M. A. Jackson, and
D. J. Craik, Butterfly pea (clitoria ternatea), a
cyclotide-bearing plant with applications in agriculture
and medicine, Front Plant Sci, vol. 10, May. 2019.
https://doi.org/10.3389/fpls.2019.00645
[3] A.C. Goncalves, A.R. Nunes, A. Falcao, G. Alves, and
L.R. Silva, Dietary effects of anthocyanins in human
health: a comprehensive review, Pharmaceuticals
(Basel), vol. 14, iss. 7, Jul. 2021.
https://doi.org/10.3390/ph14070690
[4] T. Coultate and R.S. Blackburn, Food colorants: their
past, present and future, Coloration Technology,
vol. 134, iss. 3, Mar. 2018, pp. 165-186.
https://doi.org/10.1111/cote.12334
[5] N. T. N. Hoang, N. N. K. Nguyen, L. T. K. Nguyen,
A. T. H. Le, and D. T. A. Dong, Research on
optimization of spray drying conditions,
characteristics of anthocyanins extracted from
Hibiscus sabdariffa L. flower and application to
marshmallows, Food Science & Nutrition, vol. 12,
iss. 3, Jan. 2024, pp. 2003-2015.
https://doi.org/10.1002/fsn3.3898
[6] S. Akhavan Mahdavi, S. M. Jafari, E. Assadpoor, and
D. Dehnad, Microencapsulation optimization of
natural anthocyanins with maltodextrin, gum Arabic
and gelatin, International Journal of Biological
Macromolecules, vol. 85, Apr. 2016, pp. 379-385.
https://doi.org/10.1016/j.ijbiomac.2016.01.011
[7] Z. Zhu et al., Green ultrasound-assisted extraction of
anthocyanin and phenolic compounds from purple
sweet potato using response surface methodology, Int
Agrophysics, vol. 30, no. 1, 2016.
https://doi.org/10.1515/intag-2015-0066
[8] S. Oancea, M. Stoia, and D. Coman, Effects of
extraction conditions on bioactive anthocyanin content
of Vaccinium Corymbosum in the perspective of food
applications, Procedia Engineering, vol. 42, 2012,
pp. 489-495.
https://doi.org/10.1016/j.proeng.2012.07.440
[9] S. Silva, E. M. Costa, C. Calhau, R. M. Morais, and
M.E. Pintado, Anthocyanin extraction from plant
tissues: a review, Critical Reviews Food Science
Nutrition, vol. 57, iss. 14, May. 2017, pp. 3072-3083.
https://doi.org/10.1080/10408398.2015.1087963
[10] T. T. T. Quyen, H. T. K. Cuc, C. T. N. Thuy, and
D. H. Cuong, Extraction of Anthocyanins Pigment
From Purple Sweet Potatoes, J Sci and Technol
DaNang, vol. 11, 2014.
[11] J. S. Boeing, E. O. Barizao, P. F. Montanher, V. de
Cinque Almeida, and J. V. Visentainer, Evaluation of
solvent effect on the extraction of phenolic compounds
and antioxidant capacities from the berries: application
of principal component analysis, Chem Central
Journal, vol. 8, Aug. 2014.
https://doi.org/10.1186/s13065-014-0048-1
[12] T. Huynh, C. Kha, V. Nguyen, T. Nguyen, T. Ha, and
H. Ngo, Spray drying conditions of lime juice prepared
by freeze-concentration, IOP Conference Series: Earth
and Enviromental Science, IOP Publishing, 2023,
vol. 1155, no. 1, pp. 012017.
https://doi.org/10.1088/1755-1315/1155/1/012017
[13] S. Santhalakshmy, S. J. Don Bosco, S. Francis, and
M. Sabeena, Effect of inlet temperature on
physicochemical properties of spray-dried jamun fruit
juice powder, Powder Technology, vol. 274,
Apr. 2015, pp. 37-43.
https://doi.org/10.1016/j.powtec.2015.01.016
[14] S. M. Jafari, M. Ghalegi Ghalenoei, and D. Dehnad,
Influence of spray drying on water solubility index,
apparent density, and anthocyanin content of
pomegranate juice powder, Powder Technology,
vol. 311, Apr. 2017, pp. 59-65.
https://doi.org/10.1016/j.powtec.2017.01.070
[15] S. F. Pang, M. M. Yusoff, and J. Gimbun, Extraction
and microencapsulation of polyphenols from
orthosiphon stamineus leaves, Journal of Mechanical
Engineering and Science (JMES), vol. 7, Dec. 2014,
pp. 1033-1041.
https://doi.org/10.15282/jmes.7.2014.2.0100
[16] C. C. Ferrari, S. P. M. Germer, and J. M. de Aguirre,
Effects of spray-drying conditions on the
physicochemical properties of blackberry powder,
Drying Technolpgy, vol. 30, iss. 2, Nov. 2011,
pp. 154-163.
https://doi.org/10.1080/07373937.2011.628429
[17] C. I. Piñón-Balderrama, C. Leyva-Porras, Y. TeránFigueroa, V. Espinosa-Solís, C. Álvarez-Salas, and
M.Z. Saavedra-Leos, Encapsulation of active
ingredients in food industry by spray-drying and nano
spray-drying tech, Processes, vol. 8, iss. 8, 2020.
https://doi.org/10.3390/pr8080889
[18] A. S. Asnawi, M. H. Hamsan, M. F. Kadir, S. B. Aziz,
and Y. M. Yusof, Investigation on electrochemical
characteristics of maltodextrin - methyl cellulose
electrolytes, Molecular Crystals and Liquid Crystals,
vol. 708, iss. 1, Jan. 2021, pp. 63-91.
https://doi.org/10.1080/15421406.2020.1810954
[19] M. Mehran, S. Masoum, and M. Memarzadeh,
Improvement of thermal stability and antioxidant activity of anthocyanins of Echium amoenum petal
using maltodextrin/modified starch combination as
wall material, International Journal of Biological
Macromolecules, vol. 148, Apr. 2020, pp. 768-776.
https://doi.org/10.1016/j.ijbiomac.2020.01.197
[20] S.E.M. Kalajahi and S. Ghandiha, Optimization of
spray drying parameters for encapsulation of Nettle
(Urtica dioica L.) extract, LWT, vol. 158,
Mar. 2022.
https://doi.org/10.1016/j.lwt.2022.113149
pharmacological investigations of perilla frutescens
(L.) britt, Molecules, vol. 24, no. 1, Dec. 2018.
https://doi.org/10.3390/molecules24010102
[2] G. K. Oguis, E. K. Gilding, M. A. Jackson, and
D. J. Craik, Butterfly pea (clitoria ternatea), a
cyclotide-bearing plant with applications in agriculture
and medicine, Front Plant Sci, vol. 10, May. 2019.
https://doi.org/10.3389/fpls.2019.00645
[3] A.C. Goncalves, A.R. Nunes, A. Falcao, G. Alves, and
L.R. Silva, Dietary effects of anthocyanins in human
health: a comprehensive review, Pharmaceuticals
(Basel), vol. 14, iss. 7, Jul. 2021.
https://doi.org/10.3390/ph14070690
[4] T. Coultate and R.S. Blackburn, Food colorants: their
past, present and future, Coloration Technology,
vol. 134, iss. 3, Mar. 2018, pp. 165-186.
https://doi.org/10.1111/cote.12334
[5] N. T. N. Hoang, N. N. K. Nguyen, L. T. K. Nguyen,
A. T. H. Le, and D. T. A. Dong, Research on
optimization of spray drying conditions,
characteristics of anthocyanins extracted from
Hibiscus sabdariffa L. flower and application to
marshmallows, Food Science & Nutrition, vol. 12,
iss. 3, Jan. 2024, pp. 2003-2015.
https://doi.org/10.1002/fsn3.3898
[6] S. Akhavan Mahdavi, S. M. Jafari, E. Assadpoor, and
D. Dehnad, Microencapsulation optimization of
natural anthocyanins with maltodextrin, gum Arabic
and gelatin, International Journal of Biological
Macromolecules, vol. 85, Apr. 2016, pp. 379-385.
https://doi.org/10.1016/j.ijbiomac.2016.01.011
[7] Z. Zhu et al., Green ultrasound-assisted extraction of
anthocyanin and phenolic compounds from purple
sweet potato using response surface methodology, Int
Agrophysics, vol. 30, no. 1, 2016.
https://doi.org/10.1515/intag-2015-0066
[8] S. Oancea, M. Stoia, and D. Coman, Effects of
extraction conditions on bioactive anthocyanin content
of Vaccinium Corymbosum in the perspective of food
applications, Procedia Engineering, vol. 42, 2012,
pp. 489-495.
https://doi.org/10.1016/j.proeng.2012.07.440
[9] S. Silva, E. M. Costa, C. Calhau, R. M. Morais, and
M.E. Pintado, Anthocyanin extraction from plant
tissues: a review, Critical Reviews Food Science
Nutrition, vol. 57, iss. 14, May. 2017, pp. 3072-3083.
https://doi.org/10.1080/10408398.2015.1087963
[10] T. T. T. Quyen, H. T. K. Cuc, C. T. N. Thuy, and
D. H. Cuong, Extraction of Anthocyanins Pigment
From Purple Sweet Potatoes, J Sci and Technol
DaNang, vol. 11, 2014.
[11] J. S. Boeing, E. O. Barizao, P. F. Montanher, V. de
Cinque Almeida, and J. V. Visentainer, Evaluation of
solvent effect on the extraction of phenolic compounds
and antioxidant capacities from the berries: application
of principal component analysis, Chem Central
Journal, vol. 8, Aug. 2014.
https://doi.org/10.1186/s13065-014-0048-1
[12] T. Huynh, C. Kha, V. Nguyen, T. Nguyen, T. Ha, and
H. Ngo, Spray drying conditions of lime juice prepared
by freeze-concentration, IOP Conference Series: Earth
and Enviromental Science, IOP Publishing, 2023,
vol. 1155, no. 1, pp. 012017.
https://doi.org/10.1088/1755-1315/1155/1/012017
[13] S. Santhalakshmy, S. J. Don Bosco, S. Francis, and
M. Sabeena, Effect of inlet temperature on
physicochemical properties of spray-dried jamun fruit
juice powder, Powder Technology, vol. 274,
Apr. 2015, pp. 37-43.
https://doi.org/10.1016/j.powtec.2015.01.016
[14] S. M. Jafari, M. Ghalegi Ghalenoei, and D. Dehnad,
Influence of spray drying on water solubility index,
apparent density, and anthocyanin content of
pomegranate juice powder, Powder Technology,
vol. 311, Apr. 2017, pp. 59-65.
https://doi.org/10.1016/j.powtec.2017.01.070
[15] S. F. Pang, M. M. Yusoff, and J. Gimbun, Extraction
and microencapsulation of polyphenols from
orthosiphon stamineus leaves, Journal of Mechanical
Engineering and Science (JMES), vol. 7, Dec. 2014,
pp. 1033-1041.
https://doi.org/10.15282/jmes.7.2014.2.0100
[16] C. C. Ferrari, S. P. M. Germer, and J. M. de Aguirre,
Effects of spray-drying conditions on the
physicochemical properties of blackberry powder,
Drying Technolpgy, vol. 30, iss. 2, Nov. 2011,
pp. 154-163.
https://doi.org/10.1080/07373937.2011.628429
[17] C. I. Piñón-Balderrama, C. Leyva-Porras, Y. TeránFigueroa, V. Espinosa-Solís, C. Álvarez-Salas, and
M.Z. Saavedra-Leos, Encapsulation of active
ingredients in food industry by spray-drying and nano
spray-drying tech, Processes, vol. 8, iss. 8, 2020.
https://doi.org/10.3390/pr8080889
[18] A. S. Asnawi, M. H. Hamsan, M. F. Kadir, S. B. Aziz,
and Y. M. Yusof, Investigation on electrochemical
characteristics of maltodextrin - methyl cellulose
electrolytes, Molecular Crystals and Liquid Crystals,
vol. 708, iss. 1, Jan. 2021, pp. 63-91.
https://doi.org/10.1080/15421406.2020.1810954
[19] M. Mehran, S. Masoum, and M. Memarzadeh,
Improvement of thermal stability and antioxidant activity of anthocyanins of Echium amoenum petal
using maltodextrin/modified starch combination as
wall material, International Journal of Biological
Macromolecules, vol. 148, Apr. 2020, pp. 768-776.
https://doi.org/10.1016/j.ijbiomac.2020.01.197
[20] S.E.M. Kalajahi and S. Ghandiha, Optimization of
spray drying parameters for encapsulation of Nettle
(Urtica dioica L.) extract, LWT, vol. 158,
Mar. 2022.
https://doi.org/10.1016/j.lwt.2022.113149