Thermal Simulation and Analysis of the Single LED Module
Main Article Content
Abstract
Light Emitting Diodes (LED) shows an important role in replacing traditional lamps due to their longevity, high efficiency, and environment-friendly operation. However, a large portion of the electricity applied on LED converts to heat, raising up the p-n junction working temperature, and lowering the output-light quality and the LED lifetime as well. Therefore, thermal management for LED is one of the key issues in LEDs lighting application. In order to investigate the impact of each component of the LED module on the junction temperature of the LED, we have performed thermal simulations of a typical single LED module by using the finite element method. Effects of thermal conductivity and thickness of each module’s components on junction temperature were analyzed systematically. The results provided a detailed understanding of thermal behavior of a single LED module and established a crucial insight into thermal management design for high-power white LED lamp. Thermal-interface-materials (TIM) and the dielectric layer are proposed to have thermal conductivity around 1 W/mK for system optimization. In addition, based on the thermal analysis of heat sink, we have proposed and investigated a new configuration of plastic heat sink embedded with aluminum-alloy. The thickness ratio between the embedded aluminum layer and the heatsink base is suggested to be around 0.1 to 0.15 for the optimal configuration.
Keywords
LED, thermal management, finite element method
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[1]. M. Ha, S. Graham, Development of a thermal
resistance model for chip-on-board packaging of high
power LED arrays, Microelectronics Reliability 52
(2012) 836-844 and Ha’s master thesis.
https://doi.org/10.1016/j.microrel.2012.02.005
[2]. M. Arik, C. Becker, S. Weaver, J. Petroski, Thermal
management of LEDs: package to system, Third
International Conference on Solid State Lighting, vol.
5187, 2004, pp. 64–75.
https://doi.org/10.1117/12.512731
[3]. J.J. Fan, K.C. Yung, M. Pecht, Lifetime estimation of
high-power white LED using degradation-data-driven
method, IEEE Trans. Device Mater. Reliab. 12 (Jun
2012) 470–477.
https://doi.org/10.1109/TDMR.2012.2190415
[4]. H. Dieker, C. Miesner; D. Puttjer, B. Bachl,
Comparison of different LED modules, Proc. SPIE
6797, Manufacturing LEDs for Lighting and Displays,
67970I (2007).
https://doi.org/10.1117/12.758944
[5]. K. C. Yung, H. Liem, H. S. Choy, W. K. Lun, Thermal
performance of high brightness LED array module on
PCB, International Communications in Heat and Mass
Transfer, 37 (2010) 1266-1272.
https://doi.org/10.1016/j.icheatmasstransfer.2010.07.0
23
[6]. K. Bai, L. G. Wu, Q. H. Nie, S. X. Dai, B. Y. Zhou, X.
J. Ma, Z. Y. Zheng, Thermal study on high-power
white LED down light, Advanced Design Technology,
Pts 1-3, 308-310 (2011) 2531-2536.
https://doi.org/10.4028/www.scientific.net/AMR.308
310.2531
[7]. F. Hou, D. Yang, G. Zhang, Thermal analysis of LED
lighting system with different fin heat sinks, Journal of
Semiconductors, 32 (2011).
https://doi.org/10.1088/1674-4926/32/1/014006
[8]. Y. Yang, Numerical study of the heat sink with un
iform fin width designs, International Journal of
Heat and Mass Transfer, 52 (2009) 3473–3480.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.0
42
[9]. J. V. Lawler, Thermal Simulations of Moduled IR
LED Arrays, SPIE 6942, Technologies for Synthetic
Environments: Hardware-in-the-Loop Testing XIII,
69420E (2008).
https://doi.org/10.1117/12.778719
[10]. A. L. Palisoc, C. C. Lee, Thermal-properties of the
multilayer infinite-plate structure, J. Appl. Phys. 64
(1998) 410.
https://doi.org/10.1063/1.341442
[11]. K. Bai, L. Wu, B. Zhou, Thermal simulation and
optimization of high-power white LED lamp, Proc.
IEEE, International Conference on Electronics,
Communications and Control (2011) 6067938.
https://doi.org/10.1109/ICECC.2011.6067938
[12]. Y. S. Muzychka, M. M. Yovanovich, J. R. Culham,
Influence of geometry and edge cooling on thermal
spreading resistance, J. Thermophys. and Heat
Transfer, 20, 2 (2006) 247-255.
https://doi.org/10.2514/1.14807
[13]. Y. S. Muzychka, M. M. Yovanovich, J. R. Culham,
Thermal spreading resistance in compound and
orthotropic systems, J. Thermophys. and Heat Transfer
18, 1 (2004) 45-51.
https://doi.org/10.2514/1.1267
[14]. Y. S. Muzychka, J. R. Culham, M. M. Yovanovich,
Thermal spreading resistance of eccentric heat sources
on rectangular flux channels, J. Electron Packag. 125,
2 (2003) 178-185.
https://doi.org/10.1115/1.1568125
[15]. Y. S. Muzychka, M. Stevanovic, M. M. Yovanovich,
Thermal spreading resistances in compound annular
sectors, J. Thermophys. and Heat Transfer 15, 3 (2001)
354-359.
https://doi.org/10.2514/2.6615
[16]. P. Kulha, J. Jakovenko, J. Formanek, FEM thermal
mechanical simulation of low power LED lamp for
energy efficient light sources, Proc. ICREPQ’12,
Spain (2012).
https://doi.org/10.24084/repqj10.815
[17]. L. Huang, E. Chen, D. Lee, Thermal analysis of plastic
heat sink for high power LED lamp, Proc. IEEE,
CFP1259B-ART, (2012) 197-200.
https://doi.org/10.1109/IMPACT.2012.6420272
[18]. G. Velmathi, N. Ramshanker, S. Mohan, Design,
electro-thermal simulation and geometrical
optimization of double spiral shaped microheater on a
suspended membrane for gas sensing, Iecon 2010 -
36th Annual Conference on IEEE Industrial
Electronics Society, 2010.
https://doi.org/10.1109/IECON.2010.5675550
[19]. J.N. Reddy, An Introduction to the Finite Element
Method, vol. 2, McGraw-Hill, New York, 1993.
[20]. D. Christen, M. Stojadinovic, J. Biela, Energy efficient
heat sink design: natural versus forced convection
cooling, IEEE Trans. Power Electron. 32 (Nov 2017)
8693–8704.
https://doi.org/10.1109/TPEL.2016.2640454
[21]. N. Nguyen, V.Q. Dinh, T. Nguyen-Duc, Q.T. Ta, X.V.
Dao, T.H. Pham, T.K. Nguyen-Duc. Effect of potting
materials on LED bulb's driver temperature.
Microelectronics Reliability. 2018 Jul 31;86:77-81.
https://doi.org/10.1016/j.microrel.2018.05.012
resistance model for chip-on-board packaging of high
power LED arrays, Microelectronics Reliability 52
(2012) 836-844 and Ha’s master thesis.
https://doi.org/10.1016/j.microrel.2012.02.005
[2]. M. Arik, C. Becker, S. Weaver, J. Petroski, Thermal
management of LEDs: package to system, Third
International Conference on Solid State Lighting, vol.
5187, 2004, pp. 64–75.
https://doi.org/10.1117/12.512731
[3]. J.J. Fan, K.C. Yung, M. Pecht, Lifetime estimation of
high-power white LED using degradation-data-driven
method, IEEE Trans. Device Mater. Reliab. 12 (Jun
2012) 470–477.
https://doi.org/10.1109/TDMR.2012.2190415
[4]. H. Dieker, C. Miesner; D. Puttjer, B. Bachl,
Comparison of different LED modules, Proc. SPIE
6797, Manufacturing LEDs for Lighting and Displays,
67970I (2007).
https://doi.org/10.1117/12.758944
[5]. K. C. Yung, H. Liem, H. S. Choy, W. K. Lun, Thermal
performance of high brightness LED array module on
PCB, International Communications in Heat and Mass
Transfer, 37 (2010) 1266-1272.
https://doi.org/10.1016/j.icheatmasstransfer.2010.07.0
23
[6]. K. Bai, L. G. Wu, Q. H. Nie, S. X. Dai, B. Y. Zhou, X.
J. Ma, Z. Y. Zheng, Thermal study on high-power
white LED down light, Advanced Design Technology,
Pts 1-3, 308-310 (2011) 2531-2536.
https://doi.org/10.4028/www.scientific.net/AMR.308
310.2531
[7]. F. Hou, D. Yang, G. Zhang, Thermal analysis of LED
lighting system with different fin heat sinks, Journal of
Semiconductors, 32 (2011).
https://doi.org/10.1088/1674-4926/32/1/014006
[8]. Y. Yang, Numerical study of the heat sink with un
iform fin width designs, International Journal of
Heat and Mass Transfer, 52 (2009) 3473–3480.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.0
42
[9]. J. V. Lawler, Thermal Simulations of Moduled IR
LED Arrays, SPIE 6942, Technologies for Synthetic
Environments: Hardware-in-the-Loop Testing XIII,
69420E (2008).
https://doi.org/10.1117/12.778719
[10]. A. L. Palisoc, C. C. Lee, Thermal-properties of the
multilayer infinite-plate structure, J. Appl. Phys. 64
(1998) 410.
https://doi.org/10.1063/1.341442
[11]. K. Bai, L. Wu, B. Zhou, Thermal simulation and
optimization of high-power white LED lamp, Proc.
IEEE, International Conference on Electronics,
Communications and Control (2011) 6067938.
https://doi.org/10.1109/ICECC.2011.6067938
[12]. Y. S. Muzychka, M. M. Yovanovich, J. R. Culham,
Influence of geometry and edge cooling on thermal
spreading resistance, J. Thermophys. and Heat
Transfer, 20, 2 (2006) 247-255.
https://doi.org/10.2514/1.14807
[13]. Y. S. Muzychka, M. M. Yovanovich, J. R. Culham,
Thermal spreading resistance in compound and
orthotropic systems, J. Thermophys. and Heat Transfer
18, 1 (2004) 45-51.
https://doi.org/10.2514/1.1267
[14]. Y. S. Muzychka, J. R. Culham, M. M. Yovanovich,
Thermal spreading resistance of eccentric heat sources
on rectangular flux channels, J. Electron Packag. 125,
2 (2003) 178-185.
https://doi.org/10.1115/1.1568125
[15]. Y. S. Muzychka, M. Stevanovic, M. M. Yovanovich,
Thermal spreading resistances in compound annular
sectors, J. Thermophys. and Heat Transfer 15, 3 (2001)
354-359.
https://doi.org/10.2514/2.6615
[16]. P. Kulha, J. Jakovenko, J. Formanek, FEM thermal
mechanical simulation of low power LED lamp for
energy efficient light sources, Proc. ICREPQ’12,
Spain (2012).
https://doi.org/10.24084/repqj10.815
[17]. L. Huang, E. Chen, D. Lee, Thermal analysis of plastic
heat sink for high power LED lamp, Proc. IEEE,
CFP1259B-ART, (2012) 197-200.
https://doi.org/10.1109/IMPACT.2012.6420272
[18]. G. Velmathi, N. Ramshanker, S. Mohan, Design,
electro-thermal simulation and geometrical
optimization of double spiral shaped microheater on a
suspended membrane for gas sensing, Iecon 2010 -
36th Annual Conference on IEEE Industrial
Electronics Society, 2010.
https://doi.org/10.1109/IECON.2010.5675550
[19]. J.N. Reddy, An Introduction to the Finite Element
Method, vol. 2, McGraw-Hill, New York, 1993.
[20]. D. Christen, M. Stojadinovic, J. Biela, Energy efficient
heat sink design: natural versus forced convection
cooling, IEEE Trans. Power Electron. 32 (Nov 2017)
8693–8704.
https://doi.org/10.1109/TPEL.2016.2640454
[21]. N. Nguyen, V.Q. Dinh, T. Nguyen-Duc, Q.T. Ta, X.V.
Dao, T.H. Pham, T.K. Nguyen-Duc. Effect of potting
materials on LED bulb's driver temperature.
Microelectronics Reliability. 2018 Jul 31;86:77-81.
https://doi.org/10.1016/j.microrel.2018.05.012