Precise Point Positioning with Ionospheric-Free Deviation Mask under Ionospheric Scintillation in Equatorial Region
Main Article Content
Abstract
One of the most challenging phenomena threatening the performance of satellite navigation services is ionospheric scintillation, characterized by rapid fluctuation in the amplitude and phase of the received radio signals. Although scintillation in high-latitude regions is mostly caused by refractive effect which can be eliminated by dual-frequency measurements, the non-dispersive diffractive effect experienced in low-latitude region is still hazardous. This paper introduces an improvement into Precise Point Positioning (PPP) using a cycle-slip corrector based on ionosphere-free (IF) combination and a satellite mask based on a recently introduced scintillation index called Sigma-IF for dual-frequency conventional receivers. A comparison with the index from the standard deviation of geometry-free (GF) combination is made and analyzed. A significant improvement in accuracy and continuity of PPP after applying the proposed method is presented in the results obtained from well-known IGS stations. The increasing number of dual-frequency Global Navigation Satellite Systems (GNSSs) receivers launched into the mass market is a promising enhancement to the integrity of location-based applications.
Keywords
ionospheric scintillation, Precise Point Positioning, Global Navigation Satellite System (GNSS)
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[1] G. Johnston, A. Riddell, G. Hausler, The International GNSS Service, Springer Handbook of Global Navigation Satellite Systems, P. J. Teunissen and O. Montenbruck, Eds., Cham, Springer International Publishing, 2017, pp. 967-982, http://dx.doi.org/10.1007/978-3-319-42928-1_33.
[2] Automatic Precise Positioning Service (APPS),
[3] J. M. Juan, J. Sanz, G. González-Casado, A. RoviraGarcia, Feasibility of precise navigation in high and low latitude regions under scintillation conditions, J. of Space Weather and Space Climate, vol. 8, p. A05, 2018, https://doi.org/10.1051/swsc/2017047.
[4] S. Skone, M. Feng, F. Ghafoori, R. Tiwari, Investigation of scintillation characteristics for high latitude phenomena, Proc. of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA (USA), 2008.
[5] J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, vol. 102, pp. 5005-5017, 1997, https://doi.org/10.1029/96JB03860.
[6] J. Sanz Subirana, M. Hernández-Pajares and J. M. Juan Zornoza, GNSS Data Processing, Vol. I: Fundamentals and Algorithms, ESA Communications, 2013.
[7] Y. Béniguel, V. Romano, L. Alfonsi, M. Aquino, Ionospheric scintillation monitoring and modeling, Annals of Geophysics, vol. 52, pp. 3-4, 2009, http://dx.doi.org/10.4401/ag-4595.
[8] W. Liu, X. Jin, M. Wu, J. H, Y. Wu, A new real-time cycle slip detection and repair method under high ionospheric activity for a triple-frequency GPS/BDS receiver, Sensors (Basel, Switzerland), vol. 18, no. 2, p. 427, 2018, http://dx.doi.org/10.3390/s18020427.
[9] Zhao, D., Li, W., Li, C., Tang, X., Wang, Q., Hancock, C. M., et al, Ionospheric phase scintillation index estimation based on 1 Hz geodetic GNSS receiver measurements by using continuous wavelet transform, Space Weather, 20, e2021SW003015, 2022, https://doi.org/10.1029/2021SW003015.
[10] Dongsheng Zhao, Wang Li, Chendong Li, Craig M. Hancock, Gethin Wyn Roberts, Qianxin Wang, Analysis on the ionospheric scintillation monitoring performance of ROTI extracted from GNSS observations in high-latitude regions, Advances in Space Research, vol. 69, no. 1, 2022, p. 142-158, https://doi.org/10.1016/j.asr.2021.09.026.
[11] J. M. Juan, A. Aragon-Angel, J. Sanz, G. GonzálezCasado, A. Rovira-Garcia, A method for scintillation characterization using geodetic receiver operating at 1Hz, J. of Geodesy, vol. 91, no. 11, p. 1383–1397, 2017, http://dx.doi.org/10.1007/s00190-017-1031-0.
[12] V. K. Nguyen, A. Rovira-Garcia, J. M. Juan, J. Sanz, T. V. La, T. H. Ta, Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz, Journal of Geodesy, no. 93, 2019, http://dx.doi.org/10.1007/s00190-019-01297-z.
[13] K. Kazmierski, T. Hadas, K. Sośnica, Weighting of multi-GNSS observations in real-time precise point positioning, Remote Sensing, vol. 10, no. 1, p. 84, 2018, https://doi.org/10.3390/rs10010084
[2] Automatic Precise Positioning Service (APPS),
[3] J. M. Juan, J. Sanz, G. González-Casado, A. RoviraGarcia, Feasibility of precise navigation in high and low latitude regions under scintillation conditions, J. of Space Weather and Space Climate, vol. 8, p. A05, 2018, https://doi.org/10.1051/swsc/2017047.
[4] S. Skone, M. Feng, F. Ghafoori, R. Tiwari, Investigation of scintillation characteristics for high latitude phenomena, Proc. of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA (USA), 2008.
[5] J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, vol. 102, pp. 5005-5017, 1997, https://doi.org/10.1029/96JB03860.
[6] J. Sanz Subirana, M. Hernández-Pajares and J. M. Juan Zornoza, GNSS Data Processing, Vol. I: Fundamentals and Algorithms, ESA Communications, 2013.
[7] Y. Béniguel, V. Romano, L. Alfonsi, M. Aquino, Ionospheric scintillation monitoring and modeling, Annals of Geophysics, vol. 52, pp. 3-4, 2009, http://dx.doi.org/10.4401/ag-4595.
[8] W. Liu, X. Jin, M. Wu, J. H, Y. Wu, A new real-time cycle slip detection and repair method under high ionospheric activity for a triple-frequency GPS/BDS receiver, Sensors (Basel, Switzerland), vol. 18, no. 2, p. 427, 2018, http://dx.doi.org/10.3390/s18020427.
[9] Zhao, D., Li, W., Li, C., Tang, X., Wang, Q., Hancock, C. M., et al, Ionospheric phase scintillation index estimation based on 1 Hz geodetic GNSS receiver measurements by using continuous wavelet transform, Space Weather, 20, e2021SW003015, 2022, https://doi.org/10.1029/2021SW003015.
[10] Dongsheng Zhao, Wang Li, Chendong Li, Craig M. Hancock, Gethin Wyn Roberts, Qianxin Wang, Analysis on the ionospheric scintillation monitoring performance of ROTI extracted from GNSS observations in high-latitude regions, Advances in Space Research, vol. 69, no. 1, 2022, p. 142-158, https://doi.org/10.1016/j.asr.2021.09.026.
[11] J. M. Juan, A. Aragon-Angel, J. Sanz, G. GonzálezCasado, A. Rovira-Garcia, A method for scintillation characterization using geodetic receiver operating at 1Hz, J. of Geodesy, vol. 91, no. 11, p. 1383–1397, 2017, http://dx.doi.org/10.1007/s00190-017-1031-0.
[12] V. K. Nguyen, A. Rovira-Garcia, J. M. Juan, J. Sanz, T. V. La, T. H. Ta, Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz, Journal of Geodesy, no. 93, 2019, http://dx.doi.org/10.1007/s00190-019-01297-z.
[13] K. Kazmierski, T. Hadas, K. Sośnica, Weighting of multi-GNSS observations in real-time precise point positioning, Remote Sensing, vol. 10, no. 1, p. 84, 2018, https://doi.org/10.3390/rs10010084