Probabilistic Locational Marginal Price by Monte Carlo Simulation with Latin Hypercube Sampling and Scenario Reduction Techniques
Main Article Content
Abstract
Leveraging Monte Carlo Simulation (MCS) combined with simple random sampling (SRS) to evaluate probabilistic locational marginal price (P-LMP) requires long computation time and large computer storage. The paper proposes the joint usage of Latin hypercube sampling (LHS) with sample reduction techniques called the fast forward selection (FFS) algorithm into Monte Carlo simulation for calculation of the P-LMP. This fast forward selection algorithm is needed to cut down the number of samples while keeping most of the stochastic information embedded in such samples. The LHS-FFS based P-LMP is investigated using IEEE 6-bus and 24-bus systems. This method is compared with SRS and LHS only. The LHS-FFS approach is found to be efficient and flexible; therefore, it has the potential to be applied in many power system probabilistic problems.
Keywords
Latin hypercube sampling (LHS), Monte Carlo simulation (MCS), probabilistic locational marginal price (P-LMP), fast forward selection (FFS) algorithm, uncertainty
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] S. Liu, L. Trinh, J. Zhu, and M. Moore, Comprehensive wind power interconnection evaluation method based on LMP market simulation, 1st IEEE-PES/IAS Conf. Sustain. Altern. Energy, SAE 2009 - Proc., 2009. https://doi.org/10.1109/SAE.2009.5534877
[3] F. Li, S. Member, R. Bo, and S. Member, DCOPFBased LMP Simulation : Algorithm, comparison with ACOPF and sensitivity, IEEE Trans. Power Syst., 22 (2007) 1475–1485. https://doi.org/10.1109/TPWRS.2007.907924
[4] X. Fang, Y. Wei, and F. Li, Evaluation of LMP Intervals Considering Wind Uncertainty, IEEE Trans. Power Syst., 31 (2016) 2495–2496. https://doi.org/10.1109/TPWRS.2015.2449755
[5] H. Yu, C. Y. Chung, K. P. Wong, H. W. Lee, and J. H. Zhang, Probabilistic load flow evaluation with hybrid Latin hypercube sampling and Cholesky decomposition, IEEE Trans. Power Syst., 24 (2009) 661–667. https://doi.org/10.1109/TPWRS.2009.2016589
[6] M. Hajian, W. D. Rosehart, and H. Zareipour, Probabilistic power flow by Monte Carlo simulation with Latin supercube sampling, IEEE Trans. Power Syst., 28 (2013)1550–1559. https://doi.org/10.1109/TPWRS.2012.2214447
[7] A. Soroudi, M. Ehsan, R. Caire, and N. Hadjsaid, Possibilistic evaluation of distributed generations impacts on distribution networks, IEEE Trans. Power Syst., 26 (2011) 2293–2301. https://doi.org/10.1109/TPWRS.2011.2116810
[8] A. Soroudi, Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment, IEEE Trans. Power Syst., 27 (2012) 1283–1293. https://doi.org/10.1109/TPWRS.2011.2180933
[9] A. Soroudi and M. Ehsan, IGDT based robust decision-making tool for DNOs in load procurement under severe uncertainty, IEEE Trans. Smart Grid, 4 (2013) 886–895. https://doi.org/10.1109/TSG.2012.2214071
[10] N. B. Hargreaves, S. M. Pantea, and G. A. Taylor, Large Scale Renewable Power Generation (Advances in Technologies for Generation, Transmission, and Storage), 2014.
[11] J. M. Morales, S. Pineda, A. J. Conejo, and M. Carrion, Scenario reduction for futures market trading in electricity markets, IEEE Trans. Power Syst., 24 (2009) 878–888.
[12] K. C. Sharma, P. Jain, and R. Bhakar, Wind Power Scenario Generation and Reduction in Stochastic Programming Framework, Electr. Power Components Syst., 41 (2013) 271–285. https://doi.org/10.1109/TPWRS.2009.2016072
[13] Y. Wang, Y. Liu, and D. S. Kirschen, Scenario Reduction with Submodular Optimization, IEEE Trans. Power Syst., 32(2016) 2479-2480. https://doi.org/10.1109/TPWRS.2016.2603448
[14] https://www.mathworks.com/products/matlab.html.
[15] N. Gröwe-Kuska, H. Heitsch, and W. Römisch, Scenario reduction and scenario tree construction for power management problems, 2003 IEEE Bol. PowerTech - Conf. Proc., 3 (2003) 152–158.
[16] H. Heitsch and W. Römisch, Scenario reduction algorithms in stochastic programming, Comput. Optim. Appl., 24 (2003) 187–206.
[17] H. W. Dommel and W. F. Tinney, Optimal Power Flow Solutions, IEEE Trans. Power Appar. Syst., PAS-87 (1968) 1866–1876. https://doi.org/10.1109/TPAS.1968.292150
[18] D. I. Sun, B. Ashley, B. Brewer, A. Hughes, and W. F. Tinney, Optimal power flow by Newton approach, IEEE Trans. Power Appar. Syst., PAS-103 (1984) 2864–2880. https://doi.org/10.1109/TPAS.1984.318284
[19] O. Alsaç, J. Bright, M. Prais, and B. Stott, Further developments in lp-based optimal power flow, IEEE Trans. Power Syst., 5 (1990) 697–711. https://doi.org/10.1109/59.65896
[20] L. S. Vargas, V. H. Quintana, and A. Vannelli, A tutorial description of an interior point method and its applications to security-constrained economic dispatch, IEEE Trans. Power Syst., 8 (1993) 1315– 1324. https://doi.org/10.1109/59.260862
[21] J. M. Morales and J. Pérez-ruiz, Simulating the Impact of Wind Production on Locational Marginal Prices, IEEE Trans. Power Syst., 26 (2011) 820-828. https://doi.org/10.1109/TPWRS.2010.2052374
[22] https://www.powerworld.com/