Evaluation of the Influence of Lightning Overvoltage Propagation on Wind Turbine and “Mix” Overhead-Cable Lines
Main Article Content
Abstract
Due to the growing demand for new and renewable energies and a favorable geographical position, Vietnam is constructing many wind farms. Besides the advantages of being environmentally friendly and the primary endless source of materials, wind farms have disadvantages, for example, high-structured wind towers are usually built in high, empty places and the resistivity of large soil is vulnerable to lightning damage. In this research, we investigate the effects of overvoltage due to lightning strikes on the wings of wind turbines and propagation causing overvoltage on the insulation of cable in the control cable and mixed-lines. The paper also considers the overvoltage protection measures propagated into the insulation equipment and cable insulation using EMTP-RV simulation software
Keywords
Lightning surge, EMTP- RV simulation, wind turbine, mixed line
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[1]. Y. Yasuda et al., Surge analysis on wind farm when winter lightning strikes, IEEE Trans. Energy Conversion, Vol. 23, pp 257-262, 2008.
[2]. F. Rachidi et al., A review of current issues in lightning protection of new-generation wind-turbine blades, IEEE Trans. Industrial Electronics, Vol. 55, pp 2489–2496, 2008.
[3]. IEC, Wind turbine generation system—24, Lightning Protection,. Tech.Rep.TR61400-24, 2002.
[4]. E. D. Sunde, Earth conduction effects in transmission systems, 2nd ed. New York, NY, USA: Dover Publications, 1968.
[5]. CIGRE WG 33.01, Guide to procedures for estimating the lightning performance of transmission lines, CIGRE technical brochure No. 63, 1991.
[6]. L. V. Bewley, Traveling waves on transmission systems. New York, NY, USA: Dover Publications, 1963.
[7]. A. Soares, M. A. O. Schroeder, and S. Visacro, Transient voltages in transmission lines caused by direct lightning strikes, IEEE Trans. Power Del., vol. 20, no. 2, pp. 1447–1452, Apr. 2005.
https://doi.org/10.1109/TPWRD.2004.839214
[8]. CIGRÉ Working Group 33.01, Guide to procedures for estimating the lightning performance of transmission lines, document CIGRÉ Tech. Brochure 63, 1991.
[9]. P. Chowdhuri et al., Parameters of lightning strokes: A review, IEEE Trans. Power Del., vol. 20, no. 1, pp. 346–358, Jan. 2005.
https://doi.org/10.1109/TPWRD.2004.835039
[10]. A. F. Imece et al., Modeling guidelines for fast front transients, IEEE Trans. Power Del., vol. 11, no. 1, pp. 493–506, Jan. 1996.
https://doi.org/10.1109/61.484134
[11]. J. Takami and S. Okabe, Observational results of lightning current on transmission towers, IEEE Trans. Power Del., vol. 22, no. 1, pp. 547-556, Jan. 2007, http://doi.org/10.1109/TPWRD.2006.883006.
[12]. IEEE Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems - Redline, IEEE Std C62.22-2009, vol., no., pp.1-177 July. 2009.
[13]. F. M. Gatta, A. Geri, and S. Lauria, Lightning performance improvement of typical 380 kV tower grounding systems, in Proc. International Conference on Grounding and Earthing (GROUND’2006), Maceió, Brazil, 2006, pp. 321-329.
[14]. IEC, Computational guide to insulation coordination and modelling of electrical networks, Tech. Rep. TR 60071-4, 1st ed., June. 2004.
[15]. A. Geri, F. M. Gatta, S. Lauria, and L. Colla, Lightning performance of long mixed overhead-cable EHV lines, in Proc. 28th International Conference on Lightning Protection (ICLP 2006), Kanazawa, Japan, Sep. 2006.
[16]. M. Rioual, Short and long air gaps (insulator strings and spark gaps) modelling for lightning studies with EMTP program (EPRI-DCG version 2.0), Research project, final report, Mar.1988.
[17]. H. B. Dwight, Calculation of the resistances to ground, Electr. Eng., vol. 55, pp. 1319–1328, Dec. 1936.
https://doi.org/10.1109/EE.1936.6539232
[18]. R. Rudenberg, Electrical shock waves in Power Systems. Cambridge, MA: Harvard Univ. Press, 1968.
https://doi.org/10.4159/harvard.9780674432390
[19]. S. Bourg, B. Sacepe, and T. Debu, Deep earth electrodes in highly resistive ground: Frequency behaviour, in Proc. 1995, IEEE Int. Symp. Electromagn. Compat., pp. 584–589.
[20]. L. Grcev and S. Grceva, On HF circuit models of horizontal grounding electrodes, IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 873–875, Aug. 2009.
https://doi.org/10.1109/TEMC.2009.2023330
[21]. Basic Impulse Level (BIL) withstand of shield/sheath interrupts, IEEE Standard 575TM-2014.
[22]. IEC, Insulation coordination – Part 1: Definitions, principles and rules. IEC Standard 60071-1, 2011.
[23]. A. Ametani, Wave Propagation Characteristics of Cables, IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 2, pp. 499-505, Mar. 1980.
https://doi.org/10.1109/TPAS.1980.319685.
[2]. F. Rachidi et al., A review of current issues in lightning protection of new-generation wind-turbine blades, IEEE Trans. Industrial Electronics, Vol. 55, pp 2489–2496, 2008.
[3]. IEC, Wind turbine generation system—24, Lightning Protection,. Tech.Rep.TR61400-24, 2002.
[4]. E. D. Sunde, Earth conduction effects in transmission systems, 2nd ed. New York, NY, USA: Dover Publications, 1968.
[5]. CIGRE WG 33.01, Guide to procedures for estimating the lightning performance of transmission lines, CIGRE technical brochure No. 63, 1991.
[6]. L. V. Bewley, Traveling waves on transmission systems. New York, NY, USA: Dover Publications, 1963.
[7]. A. Soares, M. A. O. Schroeder, and S. Visacro, Transient voltages in transmission lines caused by direct lightning strikes, IEEE Trans. Power Del., vol. 20, no. 2, pp. 1447–1452, Apr. 2005.
https://doi.org/10.1109/TPWRD.2004.839214
[8]. CIGRÉ Working Group 33.01, Guide to procedures for estimating the lightning performance of transmission lines, document CIGRÉ Tech. Brochure 63, 1991.
[9]. P. Chowdhuri et al., Parameters of lightning strokes: A review, IEEE Trans. Power Del., vol. 20, no. 1, pp. 346–358, Jan. 2005.
https://doi.org/10.1109/TPWRD.2004.835039
[10]. A. F. Imece et al., Modeling guidelines for fast front transients, IEEE Trans. Power Del., vol. 11, no. 1, pp. 493–506, Jan. 1996.
https://doi.org/10.1109/61.484134
[11]. J. Takami and S. Okabe, Observational results of lightning current on transmission towers, IEEE Trans. Power Del., vol. 22, no. 1, pp. 547-556, Jan. 2007, http://doi.org/10.1109/TPWRD.2006.883006.
[12]. IEEE Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems - Redline, IEEE Std C62.22-2009, vol., no., pp.1-177 July. 2009.
[13]. F. M. Gatta, A. Geri, and S. Lauria, Lightning performance improvement of typical 380 kV tower grounding systems, in Proc. International Conference on Grounding and Earthing (GROUND’2006), Maceió, Brazil, 2006, pp. 321-329.
[14]. IEC, Computational guide to insulation coordination and modelling of electrical networks, Tech. Rep. TR 60071-4, 1st ed., June. 2004.
[15]. A. Geri, F. M. Gatta, S. Lauria, and L. Colla, Lightning performance of long mixed overhead-cable EHV lines, in Proc. 28th International Conference on Lightning Protection (ICLP 2006), Kanazawa, Japan, Sep. 2006.
[16]. M. Rioual, Short and long air gaps (insulator strings and spark gaps) modelling for lightning studies with EMTP program (EPRI-DCG version 2.0), Research project, final report, Mar.1988.
[17]. H. B. Dwight, Calculation of the resistances to ground, Electr. Eng., vol. 55, pp. 1319–1328, Dec. 1936.
https://doi.org/10.1109/EE.1936.6539232
[18]. R. Rudenberg, Electrical shock waves in Power Systems. Cambridge, MA: Harvard Univ. Press, 1968.
https://doi.org/10.4159/harvard.9780674432390
[19]. S. Bourg, B. Sacepe, and T. Debu, Deep earth electrodes in highly resistive ground: Frequency behaviour, in Proc. 1995, IEEE Int. Symp. Electromagn. Compat., pp. 584–589.
[20]. L. Grcev and S. Grceva, On HF circuit models of horizontal grounding electrodes, IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 873–875, Aug. 2009.
https://doi.org/10.1109/TEMC.2009.2023330
[21]. Basic Impulse Level (BIL) withstand of shield/sheath interrupts, IEEE Standard 575TM-2014.
[22]. IEC, Insulation coordination – Part 1: Definitions, principles and rules. IEC Standard 60071-1, 2011.
[23]. A. Ametani, Wave Propagation Characteristics of Cables, IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 2, pp. 499-505, Mar. 1980.
https://doi.org/10.1109/TPAS.1980.319685.