Z-Scanning of Multiple-Pulse Laser Ablation of Copper Study for Application in Roll-Printed Electronics
Main Article Content
Abstract
The advantages of pulsed laser ablation in advanced manufacturing have been studied given the intensity, sufficient orientation, damped noise, and high versatility of this method. During ultrashort laser ablation, the interaction between a copper surface and numerous pulses was explored to establish ideal focusing conditions. We present a simple theoretical description of morphological changes in the ablated channel and illustrate its utility in real-time placement of the interactive surface at the focus during multiple-pulse laser ablation of copper. The experimental results for copper ablation depth indicate that combining a dynamic focusing mechanism and a theoretical formula for ablation-cycle-dependent ablation depth allows one to regulate the geometry of ablated channels. This model can be applied to a wide range of high-efficiency ablation systems and could be crucial in the development of a high-precision ablation system for the curved surfaces in highly scaled copper gravures used in printed electronics, which are currently an engineering challenge.
Keywords
Roll printed electronics, Multiple-pulse laser ablation, Laser ablation, Optimal focusing
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[1]. D. Zhang et al, Underwater persistent bubble-assisted
femtosecond laser ablation for hierarchical micro/nano
structuring, Int. J. Extrem. Manuf. 2 (2020) 015001.
https://doi.org/10.1088/2631-7990/ab729f
[2]. S. Loganathan, S. Santhanakrishnan, R. Bathe, and
M. Arunachalam, Prediction of femtosecond laser
ablation profile on human teeth, Lasers Med. Sci., vol.
34, no. 4, pp. 693-701, Jun. 2019,
https://doi.org/10.1007/s10103-018-2644-0
[3]. B. X. Cao, P. Le Hoang, S. Ahn, J. Kim, H. Kang, and
J. Noh, Real-time laser focusing system for highprecision micromachining using diffractive beam
sampler and advanced image sensor, Opt. Lasers Eng.,
vol. 107, pp. 13-20, Aug. 2018.
https://doi.org/10.1016/j.optlaseng.2018.03.002
[4]. Kim, H.-S., Lee, D.-H., Hyun, S., Je, S.K., Park, J. G.,
Bae, J. Y., Kim, G. H., Kim, I. J., Development of a
reflective 193-nm DUV microscope system for defect
inspection of large optical surfaces, Appl. Sci. 9 (2019)
5205.
https://doi.org/10.3390/app9235205
[5]. E. G. Gamaly, A. V. Rode, B. Luther-Davies, Ablation
of solids by femtosecond lasers: Ablation mechanism
and ablation thresholds for metals and dielectrics,
Physics of Plasmas 9 (3) (2002).
https://doi.org/10.1063/1.1447555
[6]. Hedieh Pazokian, Theoretical and experimental
investigations of the influence of overlap between the
laser beam tracks on channel profile and morphology
in pulsed laser machining of polymers, Optik 171
(2018) 431-436.
https://doi.org/10.1016/j.ijleo.2018.06.066
[7]. T.-H. Chen, R. Fardel, and C. B. Arnold, Ultrafast
z-scanning for high-efficiency laser micro-machining,
Light Sci. Appl., 7(4) (2018) 17181-17181.
https://doi.org/10.1038/lsa.2017.181
[8]. G Grau et al., Gravure-printed electronics: recent
progress in tooling development, understanding of
printing physics, and realization of printed devices,
Flex. Print. Electron 1 (2016) 023002.
[9]. B. X. Cao, P.H Le, S. Ahn, H. Kang, J. Kim, and J.
Noh, Automatic real-time focus control system for
laser processing using dynamic focusing optical
system, Opt. Express 25, (2017) 28427-28441.
https://doi.org/10.1364/OE.25.028427
[10]. C. Momma, S. Nolte, B. N. Chichkov,
F. V. Alvensleben, A. Tunnermann, Precise laser
ablation with ultrashort pulses, Appl. Surf. Sci.
109/110, 15 (1997).
[11]. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik,
B. W. Shore, M. D. Perry, Optical ablation by highpower short-pulse lasers, J. Opt. Soc. Am. B 13 (1996),
459-468.
[12]. A. Naghilou, O. Armbruster, M. Kitzler, W. Kautek,
Merging spot size and pulse number dependence of
femtosecond laser ablation thresholds: modeling and
demonstration with high impact polystyrene, J. Phys.
Chem. C, vol. 119(40) (2015) 22992-22998.
https://doi.org/10.1021/acs.jpcc.5b07109
[13]. N. B. Dahotre et al., Wetting behaviour of laser
synthetic surface microtextures on Ti-6Al-4V for
bioapplication, Phil. Trans. R. Soc. A 368 (2010)
1863-1889.
[14]. Le Phuong Hoang, Phuong Thao Nguyen, Thi Kim
Cuc Nguyen, Toan Thang Vu, and Xuan Binh Cao,
Study on real-time z-scanning of multiple-pulse laser
ablation of metal applied in roll-printed electronics,
Opt. Mater. Express 11, 509-523 (2021)
[15]. A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo,
V. Bharadwaj, R. Ramponi, S. Eaton, Ablation of
copper films by femtosecond laser multipulse
irradiation, Appl. Sci. 8(10) (2018) 1826.
https://doi.org/10.1098/rsta.2010.0005
[16]. Yiwei Dong, Zongpu Wu, Yancheng You, Chunping
Yin, Wenhui Qu, and Xiaoji Li, Numerical simulation
of multi-pulsed femtosecond laser ablation: effect of a
moving laser focus, Opt. Mater. Express 9 (2019)
4194-4208.
https://doi.org/10.1364/OME.9.004194
femtosecond laser ablation for hierarchical micro/nano
structuring, Int. J. Extrem. Manuf. 2 (2020) 015001.
https://doi.org/10.1088/2631-7990/ab729f
[2]. S. Loganathan, S. Santhanakrishnan, R. Bathe, and
M. Arunachalam, Prediction of femtosecond laser
ablation profile on human teeth, Lasers Med. Sci., vol.
34, no. 4, pp. 693-701, Jun. 2019,
https://doi.org/10.1007/s10103-018-2644-0
[3]. B. X. Cao, P. Le Hoang, S. Ahn, J. Kim, H. Kang, and
J. Noh, Real-time laser focusing system for highprecision micromachining using diffractive beam
sampler and advanced image sensor, Opt. Lasers Eng.,
vol. 107, pp. 13-20, Aug. 2018.
https://doi.org/10.1016/j.optlaseng.2018.03.002
[4]. Kim, H.-S., Lee, D.-H., Hyun, S., Je, S.K., Park, J. G.,
Bae, J. Y., Kim, G. H., Kim, I. J., Development of a
reflective 193-nm DUV microscope system for defect
inspection of large optical surfaces, Appl. Sci. 9 (2019)
5205.
https://doi.org/10.3390/app9235205
[5]. E. G. Gamaly, A. V. Rode, B. Luther-Davies, Ablation
of solids by femtosecond lasers: Ablation mechanism
and ablation thresholds for metals and dielectrics,
Physics of Plasmas 9 (3) (2002).
https://doi.org/10.1063/1.1447555
[6]. Hedieh Pazokian, Theoretical and experimental
investigations of the influence of overlap between the
laser beam tracks on channel profile and morphology
in pulsed laser machining of polymers, Optik 171
(2018) 431-436.
https://doi.org/10.1016/j.ijleo.2018.06.066
[7]. T.-H. Chen, R. Fardel, and C. B. Arnold, Ultrafast
z-scanning for high-efficiency laser micro-machining,
Light Sci. Appl., 7(4) (2018) 17181-17181.
https://doi.org/10.1038/lsa.2017.181
[8]. G Grau et al., Gravure-printed electronics: recent
progress in tooling development, understanding of
printing physics, and realization of printed devices,
Flex. Print. Electron 1 (2016) 023002.
[9]. B. X. Cao, P.H Le, S. Ahn, H. Kang, J. Kim, and J.
Noh, Automatic real-time focus control system for
laser processing using dynamic focusing optical
system, Opt. Express 25, (2017) 28427-28441.
https://doi.org/10.1364/OE.25.028427
[10]. C. Momma, S. Nolte, B. N. Chichkov,
F. V. Alvensleben, A. Tunnermann, Precise laser
ablation with ultrashort pulses, Appl. Surf. Sci.
109/110, 15 (1997).
[11]. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik,
B. W. Shore, M. D. Perry, Optical ablation by highpower short-pulse lasers, J. Opt. Soc. Am. B 13 (1996),
459-468.
[12]. A. Naghilou, O. Armbruster, M. Kitzler, W. Kautek,
Merging spot size and pulse number dependence of
femtosecond laser ablation thresholds: modeling and
demonstration with high impact polystyrene, J. Phys.
Chem. C, vol. 119(40) (2015) 22992-22998.
https://doi.org/10.1021/acs.jpcc.5b07109
[13]. N. B. Dahotre et al., Wetting behaviour of laser
synthetic surface microtextures on Ti-6Al-4V for
bioapplication, Phil. Trans. R. Soc. A 368 (2010)
1863-1889.
[14]. Le Phuong Hoang, Phuong Thao Nguyen, Thi Kim
Cuc Nguyen, Toan Thang Vu, and Xuan Binh Cao,
Study on real-time z-scanning of multiple-pulse laser
ablation of metal applied in roll-printed electronics,
Opt. Mater. Express 11, 509-523 (2021)
[15]. A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo,
V. Bharadwaj, R. Ramponi, S. Eaton, Ablation of
copper films by femtosecond laser multipulse
irradiation, Appl. Sci. 8(10) (2018) 1826.
https://doi.org/10.1098/rsta.2010.0005
[16]. Yiwei Dong, Zongpu Wu, Yancheng You, Chunping
Yin, Wenhui Qu, and Xiaoji Li, Numerical simulation
of multi-pulsed femtosecond laser ablation: effect of a
moving laser focus, Opt. Mater. Express 9 (2019)
4194-4208.
https://doi.org/10.1364/OME.9.004194